Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,585 Bytes
ffead1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import numpy as np
import torch
from diffusers import DDIMScheduler, LDMSuperResolutionPipeline, UNet2DModel, VQModel
from diffusers.utils import PIL_INTERPOLATION, floats_tensor, load_image, slow, torch_device
from diffusers.utils.testing_utils import require_torch
torch.backends.cuda.matmul.allow_tf32 = False
class LDMSuperResolutionPipelineFastTests(unittest.TestCase):
@property
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
@property
def dummy_uncond_unet(self):
torch.manual_seed(0)
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=6,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
return model
@property
def dummy_vq_model(self):
torch.manual_seed(0)
model = VQModel(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=3,
)
return model
def test_inference_superresolution(self):
device = "cpu"
unet = self.dummy_uncond_unet
scheduler = DDIMScheduler()
vqvae = self.dummy_vq_model
ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler)
ldm.to(device)
ldm.set_progress_bar_config(disable=None)
init_image = self.dummy_image.to(device)
generator = torch.Generator(device=device).manual_seed(0)
image = ldm(image=init_image, generator=generator, num_inference_steps=2, output_type="numpy").images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.8678, 0.8245, 0.6381, 0.6830, 0.4385, 0.5599, 0.4641, 0.6201, 0.5150])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_inference_superresolution_fp16(self):
unet = self.dummy_uncond_unet
scheduler = DDIMScheduler()
vqvae = self.dummy_vq_model
# put models in fp16
unet = unet.half()
vqvae = vqvae.half()
ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler)
ldm.to(torch_device)
ldm.set_progress_bar_config(disable=None)
init_image = self.dummy_image.to(torch_device)
image = ldm(init_image, num_inference_steps=2, output_type="numpy").images
assert image.shape == (1, 64, 64, 3)
@slow
@require_torch
class LDMSuperResolutionPipelineIntegrationTests(unittest.TestCase):
def test_inference_superresolution(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/vq_diffusion/teddy_bear_pool.png"
)
init_image = init_image.resize((64, 64), resample=PIL_INTERPOLATION["lanczos"])
ldm = LDMSuperResolutionPipeline.from_pretrained("duongna/ldm-super-resolution", device_map="auto")
ldm.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
image = ldm(image=init_image, generator=generator, num_inference_steps=20, output_type="numpy").images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.7644, 0.7679, 0.7642, 0.7633, 0.7666, 0.7560, 0.7425, 0.7257, 0.6907])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|