File size: 4,676 Bytes
ffead1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import tempfile
import unittest

import numpy as np
import torch

from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device


torch.backends.cuda.matmul.allow_tf32 = False


class VersatileDiffusionMegaPipelineFastTests(unittest.TestCase):
    pass


@nightly
@require_torch_gpu
class VersatileDiffusionMegaPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_from_save_pretrained(self):
        pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        prompt_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg"
        )

        generator = torch.manual_seed(0)
        image = pipe.dual_guided(
            prompt="first prompt",
            image=prompt_image,
            text_to_image_strength=0.75,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=2,
            output_type="numpy",
        ).images

        with tempfile.TemporaryDirectory() as tmpdirname:
            pipe.save_pretrained(tmpdirname)
            pipe = VersatileDiffusionPipeline.from_pretrained(tmpdirname, torch_dtype=torch.float16)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        generator = generator.manual_seed(0)
        new_image = pipe.dual_guided(
            prompt="first prompt",
            image=prompt_image,
            text_to_image_strength=0.75,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=2,
            output_type="numpy",
        ).images

        assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass"

    def test_inference_dual_guided_then_text_to_image(self):
        pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        prompt = "cyberpunk 2077"
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg"
        )
        generator = torch.manual_seed(0)
        image = pipe.dual_guided(
            prompt=prompt,
            image=init_image,
            text_to_image_strength=0.75,
            generator=generator,
            guidance_scale=7.5,
            num_inference_steps=50,
            output_type="numpy",
        ).images

        image_slice = image[0, 253:256, 253:256, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1

        prompt = "A painting of a squirrel eating a burger "
        generator = torch.manual_seed(0)
        image = pipe.text_to_image(
            prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=50, output_type="numpy"
        ).images

        image_slice = image[0, 253:256, 253:256, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1

        image = pipe.image_variation(init_image, generator=generator, output_type="numpy").images

        image_slice = image[0, 253:256, 253:256, -1]

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1