File size: 4,918 Bytes
ffead1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import torch

from diffusers import UnCLIPScheduler

from .test_schedulers import SchedulerCommonTest


# UnCLIPScheduler is a modified DDPMScheduler with a subset of the configuration.
class UnCLIPSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (UnCLIPScheduler,)

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 1000,
            "variance_type": "fixed_small_log",
            "clip_sample": True,
            "clip_sample_range": 1.0,
            "prediction_type": "epsilon",
        }

        config.update(**kwargs)
        return config

    def test_timesteps(self):
        for timesteps in [1, 5, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_variance_type(self):
        for variance in ["fixed_small_log", "learned_range"]:
            self.check_over_configs(variance_type=variance)

    def test_clip_sample(self):
        for clip_sample in [True, False]:
            self.check_over_configs(clip_sample=clip_sample)

    def test_clip_sample_range(self):
        for clip_sample_range in [1, 5, 10, 20]:
            self.check_over_configs(clip_sample_range=clip_sample_range)

    def test_prediction_type(self):
        for prediction_type in ["epsilon", "sample"]:
            self.check_over_configs(prediction_type=prediction_type)

    def test_time_indices(self):
        for time_step in [0, 500, 999]:
            for prev_timestep in [None, 5, 100, 250, 500, 750]:
                if prev_timestep is not None and prev_timestep >= time_step:
                    continue

                self.check_over_forward(time_step=time_step, prev_timestep=prev_timestep)

    def test_variance_fixed_small_log(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(variance_type="fixed_small_log")
        scheduler = scheduler_class(**scheduler_config)

        assert torch.sum(torch.abs(scheduler._get_variance(0) - 1.0000e-10)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0549625)) < 1e-5
        assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.9994987)) < 1e-5

    def test_variance_learned_range(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(variance_type="learned_range")
        scheduler = scheduler_class(**scheduler_config)

        predicted_variance = 0.5

        assert scheduler._get_variance(1, predicted_variance=predicted_variance) - -10.1712790 < 1e-5
        assert scheduler._get_variance(487, predicted_variance=predicted_variance) - -5.7998052 < 1e-5
        assert scheduler._get_variance(999, predicted_variance=predicted_variance) - -0.0010011 < 1e-5

    def test_full_loop(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        timesteps = scheduler.timesteps

        model = self.dummy_model()
        sample = self.dummy_sample_deter
        generator = torch.manual_seed(0)

        for i, t in enumerate(timesteps):
            # 1. predict noise residual
            residual = model(sample, t)

            # 2. predict previous mean of sample x_t-1
            pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample

            sample = pred_prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 252.2682495) < 1e-2
        assert abs(result_mean.item() - 0.3284743) < 1e-3

    def test_full_loop_skip_timesteps(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(25)

        timesteps = scheduler.timesteps

        model = self.dummy_model()
        sample = self.dummy_sample_deter
        generator = torch.manual_seed(0)

        for i, t in enumerate(timesteps):
            # 1. predict noise residual
            residual = model(sample, t)

            if i + 1 == timesteps.shape[0]:
                prev_timestep = None
            else:
                prev_timestep = timesteps[i + 1]

            # 2. predict previous mean of sample x_t-1
            pred_prev_sample = scheduler.step(
                residual, t, sample, prev_timestep=prev_timestep, generator=generator
            ).prev_sample

            sample = pred_prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 258.2044983) < 1e-2
        assert abs(result_mean.item() - 0.3362038) < 1e-3

    def test_trained_betas(self):
        pass

    def test_add_noise_device(self):
        pass