File size: 26,109 Bytes
ffead1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
import argparse
import hashlib
import math
import os
from pathlib import Path

import colossalai
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.nn.optimizer.gemini_optimizer import GeminiAdamOptimizer
from colossalai.nn.parallel.utils import get_static_torch_model
from colossalai.utils import get_current_device
from colossalai.utils.model.colo_init_context import ColoInitContext
from huggingface_hub import create_repo, upload_folder
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig

from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel
from diffusers.optimization import get_scheduler


disable_existing_loggers()
logger = get_dist_logger()


def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str):
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="text_encoder",
        revision=args.revision,
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "RobertaSeriesModelWithTransformation":
        from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation

        return RobertaSeriesModelWithTransformation
    else:
        raise ValueError(f"{model_class} is not supported.")


def parse_args(input_args=None):
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--instance_data_dir",
        type=str,
        default=None,
        required=True,
        help="A folder containing the training data of instance images.",
    )
    parser.add_argument(
        "--class_data_dir",
        type=str,
        default=None,
        required=False,
        help="A folder containing the training data of class images.",
    )
    parser.add_argument(
        "--instance_prompt",
        type=str,
        default="a photo of sks dog",
        required=False,
        help="The prompt with identifier specifying the instance",
    )
    parser.add_argument(
        "--class_prompt",
        type=str,
        default=None,
        help="The prompt to specify images in the same class as provided instance images.",
    )
    parser.add_argument(
        "--with_prior_preservation",
        default=False,
        action="store_true",
        help="Flag to add prior preservation loss.",
    )
    parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
    parser.add_argument(
        "--num_class_images",
        type=int,
        default=100,
        help=(
            "Minimal class images for prior preservation loss. If there are not enough images already present in"
            " class_data_dir, additional images will be sampled with class_prompt."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="text-inversion-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--placement",
        type=str,
        default="cpu",
        help="Placement Policy for Gemini. Valid when using colossalai as dist plan.",
    )
    parser.add_argument(
        "--center_crop",
        default=False,
        action="store_true",
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
        "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=5e-6,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )

    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default=None,
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")

    if input_args is not None:
        args = parser.parse_args(input_args)
    else:
        args = parser.parse_args()

    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.with_prior_preservation:
        if args.class_data_dir is None:
            raise ValueError("You must specify a data directory for class images.")
        if args.class_prompt is None:
            raise ValueError("You must specify prompt for class images.")
    else:
        if args.class_data_dir is not None:
            logger.warning("You need not use --class_data_dir without --with_prior_preservation.")
        if args.class_prompt is not None:
            logger.warning("You need not use --class_prompt without --with_prior_preservation.")

    return args


class DreamBoothDataset(Dataset):
    """
    A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
    It pre-processes the images and the tokenizes prompts.
    """

    def __init__(
        self,
        instance_data_root,
        instance_prompt,
        tokenizer,
        class_data_root=None,
        class_prompt=None,
        size=512,
        center_crop=False,
    ):
        self.size = size
        self.center_crop = center_crop
        self.tokenizer = tokenizer

        self.instance_data_root = Path(instance_data_root)
        if not self.instance_data_root.exists():
            raise ValueError("Instance images root doesn't exists.")

        self.instance_images_path = list(Path(instance_data_root).iterdir())
        self.num_instance_images = len(self.instance_images_path)
        self.instance_prompt = instance_prompt
        self._length = self.num_instance_images

        if class_data_root is not None:
            self.class_data_root = Path(class_data_root)
            self.class_data_root.mkdir(parents=True, exist_ok=True)
            self.class_images_path = list(self.class_data_root.iterdir())
            self.num_class_images = len(self.class_images_path)
            self._length = max(self.num_class_images, self.num_instance_images)
            self.class_prompt = class_prompt
        else:
            self.class_data_root = None

        self.image_transforms = transforms.Compose(
            [
                transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
                transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )

    def __len__(self):
        return self._length

    def __getitem__(self, index):
        example = {}
        instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
        if not instance_image.mode == "RGB":
            instance_image = instance_image.convert("RGB")
        example["instance_images"] = self.image_transforms(instance_image)
        example["instance_prompt_ids"] = self.tokenizer(
            self.instance_prompt,
            padding="do_not_pad",
            truncation=True,
            max_length=self.tokenizer.model_max_length,
        ).input_ids

        if self.class_data_root:
            class_image = Image.open(self.class_images_path[index % self.num_class_images])
            if not class_image.mode == "RGB":
                class_image = class_image.convert("RGB")
            example["class_images"] = self.image_transforms(class_image)
            example["class_prompt_ids"] = self.tokenizer(
                self.class_prompt,
                padding="do_not_pad",
                truncation=True,
                max_length=self.tokenizer.model_max_length,
            ).input_ids

        return example


class PromptDataset(Dataset):
    "A simple dataset to prepare the prompts to generate class images on multiple GPUs."

    def __init__(self, prompt, num_samples):
        self.prompt = prompt
        self.num_samples = num_samples

    def __len__(self):
        return self.num_samples

    def __getitem__(self, index):
        example = {}
        example["prompt"] = self.prompt
        example["index"] = index
        return example


# Gemini + ZeRO DDP
def gemini_zero_dpp(model: torch.nn.Module, placememt_policy: str = "auto"):
    from colossalai.nn.parallel import GeminiDDP

    model = GeminiDDP(
        model, device=get_current_device(), placement_policy=placememt_policy, pin_memory=True, search_range_mb=64
    )
    return model


def main(args):
    if args.seed is None:
        colossalai.launch_from_torch(config={})
    else:
        colossalai.launch_from_torch(config={}, seed=args.seed)

    local_rank = gpc.get_local_rank(ParallelMode.DATA)
    world_size = gpc.get_world_size(ParallelMode.DATA)

    if args.with_prior_preservation:
        class_images_dir = Path(args.class_data_dir)
        if not class_images_dir.exists():
            class_images_dir.mkdir(parents=True)
        cur_class_images = len(list(class_images_dir.iterdir()))

        if cur_class_images < args.num_class_images:
            torch_dtype = torch.float16 if get_current_device() == "cuda" else torch.float32
            pipeline = DiffusionPipeline.from_pretrained(
                args.pretrained_model_name_or_path,
                torch_dtype=torch_dtype,
                safety_checker=None,
                revision=args.revision,
            )
            pipeline.set_progress_bar_config(disable=True)

            num_new_images = args.num_class_images - cur_class_images
            logger.info(f"Number of class images to sample: {num_new_images}.")

            sample_dataset = PromptDataset(args.class_prompt, num_new_images)
            sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)

            pipeline.to(get_current_device())

            for example in tqdm(
                sample_dataloader,
                desc="Generating class images",
                disable=not local_rank == 0,
            ):
                images = pipeline(example["prompt"]).images

                for i, image in enumerate(images):
                    hash_image = hashlib.sha1(image.tobytes()).hexdigest()
                    image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
                    image.save(image_filename)

            del pipeline

    # Handle the repository creation
    if local_rank == 0:
        if args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

    # Load the tokenizer
    if args.tokenizer_name:
        logger.info(f"Loading tokenizer from {args.tokenizer_name}", ranks=[0])
        tokenizer = AutoTokenizer.from_pretrained(
            args.tokenizer_name,
            revision=args.revision,
            use_fast=False,
        )
    elif args.pretrained_model_name_or_path:
        logger.info("Loading tokenizer from pretrained model", ranks=[0])
        tokenizer = AutoTokenizer.from_pretrained(
            args.pretrained_model_name_or_path,
            subfolder="tokenizer",
            revision=args.revision,
            use_fast=False,
        )
        # import correct text encoder class
    text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path)

    # Load models and create wrapper for stable diffusion

    logger.info(f"Loading text_encoder from {args.pretrained_model_name_or_path}", ranks=[0])

    text_encoder = text_encoder_cls.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="text_encoder",
        revision=args.revision,
    )

    logger.info(f"Loading AutoencoderKL from {args.pretrained_model_name_or_path}", ranks=[0])
    vae = AutoencoderKL.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="vae",
        revision=args.revision,
    )

    logger.info(f"Loading UNet2DConditionModel from {args.pretrained_model_name_or_path}", ranks=[0])
    with ColoInitContext(device=get_current_device()):
        unet = UNet2DConditionModel.from_pretrained(
            args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, low_cpu_mem_usage=False
        )

    vae.requires_grad_(False)
    text_encoder.requires_grad_(False)

    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()

    if args.scale_lr:
        args.learning_rate = args.learning_rate * args.train_batch_size * world_size

    unet = gemini_zero_dpp(unet, args.placement)

    # config optimizer for colossalai zero
    optimizer = GeminiAdamOptimizer(
        unet, lr=args.learning_rate, initial_scale=2**5, clipping_norm=args.max_grad_norm
    )

    # load noise_scheduler
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")

    # prepare dataset
    logger.info(f"Prepare dataset from {args.instance_data_dir}", ranks=[0])
    train_dataset = DreamBoothDataset(
        instance_data_root=args.instance_data_dir,
        instance_prompt=args.instance_prompt,
        class_data_root=args.class_data_dir if args.with_prior_preservation else None,
        class_prompt=args.class_prompt,
        tokenizer=tokenizer,
        size=args.resolution,
        center_crop=args.center_crop,
    )

    def collate_fn(examples):
        input_ids = [example["instance_prompt_ids"] for example in examples]
        pixel_values = [example["instance_images"] for example in examples]

        # Concat class and instance examples for prior preservation.
        # We do this to avoid doing two forward passes.
        if args.with_prior_preservation:
            input_ids += [example["class_prompt_ids"] for example in examples]
            pixel_values += [example["class_images"] for example in examples]

        pixel_values = torch.stack(pixel_values)
        pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()

        input_ids = tokenizer.pad(
            {"input_ids": input_ids},
            padding="max_length",
            max_length=tokenizer.model_max_length,
            return_tensors="pt",
        ).input_ids

        batch = {
            "input_ids": input_ids,
            "pixel_values": pixel_values,
        }
        return batch

    train_dataloader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn, num_workers=1
    )

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader))
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps,
        num_training_steps=args.max_train_steps,
    )
    weight_dtype = torch.float32
    if args.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif args.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    # Move text_encode and vae to gpu.
    # For mixed precision training we cast the text_encoder and vae weights to half-precision
    # as these models are only used for inference, keeping weights in full precision is not required.
    vae.to(get_current_device(), dtype=weight_dtype)
    text_encoder.to(get_current_device(), dtype=weight_dtype)

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader))
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # Train!
    total_batch_size = args.train_batch_size * world_size

    logger.info("***** Running training *****", ranks=[0])
    logger.info(f"  Num examples = {len(train_dataset)}", ranks=[0])
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}", ranks=[0])
    logger.info(f"  Num Epochs = {args.num_train_epochs}", ranks=[0])
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}", ranks=[0])
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}", ranks=[0])
    logger.info(f"  Total optimization steps = {args.max_train_steps}", ranks=[0])

    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps), disable=not local_rank == 0)
    progress_bar.set_description("Steps")
    global_step = 0

    torch.cuda.synchronize()
    for epoch in range(args.num_train_epochs):
        unet.train()
        for step, batch in enumerate(train_dataloader):
            torch.cuda.reset_peak_memory_stats()
            # Move batch to gpu
            for key, value in batch.items():
                batch[key] = value.to(get_current_device(), non_blocking=True)

            # Convert images to latent space
            optimizer.zero_grad()

            latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
            latents = latents * 0.18215

            # Sample noise that we'll add to the latents
            noise = torch.randn_like(latents)
            bsz = latents.shape[0]
            # Sample a random timestep for each image
            timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
            timesteps = timesteps.long()

            # Add noise to the latents according to the noise magnitude at each timestep
            # (this is the forward diffusion process)
            noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)

            # Get the text embedding for conditioning
            encoder_hidden_states = text_encoder(batch["input_ids"])[0]

            # Predict the noise residual
            model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample

            # Get the target for loss depending on the prediction type
            if noise_scheduler.config.prediction_type == "epsilon":
                target = noise
            elif noise_scheduler.config.prediction_type == "v_prediction":
                target = noise_scheduler.get_velocity(latents, noise, timesteps)
            else:
                raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

            if args.with_prior_preservation:
                # Chunk the noise and model_pred into two parts and compute the loss on each part separately.
                model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
                target, target_prior = torch.chunk(target, 2, dim=0)

                # Compute instance loss
                loss = F.mse_loss(model_pred.float(), target.float(), reduction="none").mean([1, 2, 3]).mean()

                # Compute prior loss
                prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")

                # Add the prior loss to the instance loss.
                loss = loss + args.prior_loss_weight * prior_loss
            else:
                loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")

            optimizer.backward(loss)

            optimizer.step()
            lr_scheduler.step()
            logger.info(f"max GPU_mem cost is {torch.cuda.max_memory_allocated()/2**20} MB", ranks=[0])
            # Checks if the accelerator has performed an optimization step behind the scenes
            progress_bar.update(1)
            global_step += 1
            logs = {
                "loss": loss.detach().item(),
                "lr": optimizer.param_groups[0]["lr"],
            }  # lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)

            if global_step % args.save_steps == 0:
                torch.cuda.synchronize()
                torch_unet = get_static_torch_model(unet)
                if local_rank == 0:
                    pipeline = DiffusionPipeline.from_pretrained(
                        args.pretrained_model_name_or_path,
                        unet=torch_unet,
                        revision=args.revision,
                    )
                    save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                    pipeline.save_pretrained(save_path)
                    logger.info(f"Saving model checkpoint to {save_path}", ranks=[0])
            if global_step >= args.max_train_steps:
                break

    torch.cuda.synchronize()
    unet = get_static_torch_model(unet)

    if local_rank == 0:
        pipeline = DiffusionPipeline.from_pretrained(
            args.pretrained_model_name_or_path,
            unet=unet,
            revision=args.revision,
        )

        pipeline.save_pretrained(args.output_dir)
        logger.info(f"Saving model checkpoint to {args.output_dir}", ranks=[0])

        if args.push_to_hub:
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )


if __name__ == "__main__":
    args = parse_args()
    main(args)