Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Optional, Tuple, Union | |
import torch | |
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
class CustomLocalPipeline(DiffusionPipeline): | |
r""" | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Parameters: | |
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of | |
[`DDPMScheduler`], or [`DDIMScheduler`]. | |
""" | |
def __init__(self, unet, scheduler): | |
super().__init__() | |
self.register_modules(unet=unet, scheduler=scheduler) | |
def __call__( | |
self, | |
batch_size: int = 1, | |
generator: Optional[torch.Generator] = None, | |
num_inference_steps: int = 50, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
**kwargs, | |
) -> Union[ImagePipelineOutput, Tuple]: | |
r""" | |
Args: | |
batch_size (`int`, *optional*, defaults to 1): | |
The number of images to generate. | |
generator (`torch.Generator`, *optional*): | |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation | |
deterministic. | |
eta (`float`, *optional*, defaults to 0.0): | |
The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM). | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple. | |
Returns: | |
[`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if | |
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the | |
generated images. | |
""" | |
# Sample gaussian noise to begin loop | |
image = torch.randn( | |
(batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size), | |
generator=generator, | |
) | |
image = image.to(self.device) | |
# set step values | |
self.scheduler.set_timesteps(num_inference_steps) | |
for t in self.progress_bar(self.scheduler.timesteps): | |
# 1. predict noise model_output | |
model_output = self.unet(image, t).sample | |
# 2. predict previous mean of image x_t-1 and add variance depending on eta | |
# eta corresponds to η in paper and should be between [0, 1] | |
# do x_t -> x_t-1 | |
image = self.scheduler.step(model_output, t, image).prev_sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).numpy() | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
if not return_dict: | |
return (image,), "This is a local test" | |
return ImagePipelineOutput(images=image), "This is a local test" | |