hungchiayu1
initial commit
ffead1e
raw
history blame
14.9 kB
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
import torch.nn.functional as F
from transformers import (
ClapTextConfig,
ClapTextModelWithProjection,
RobertaTokenizer,
SpeechT5HifiGan,
SpeechT5HifiGanConfig,
)
from diffusers import (
AudioLDMPipeline,
AutoencoderKL,
DDIMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNet2DConditionModel,
)
from diffusers.utils import slow, torch_device
from ...pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
from ...test_pipelines_common import PipelineTesterMixin
class AudioLDMPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = AudioLDMPipeline
params = TEXT_TO_AUDIO_PARAMS
batch_params = TEXT_TO_AUDIO_BATCH_PARAMS
required_optional_params = frozenset(
[
"num_inference_steps",
"num_waveforms_per_prompt",
"generator",
"latents",
"output_type",
"return_dict",
"callback",
"callback_steps",
]
)
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=(32, 64),
class_embed_type="simple_projection",
projection_class_embeddings_input_dim=32,
class_embeddings_concat=True,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=1,
out_channels=1,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
torch.manual_seed(0)
text_encoder_config = ClapTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
projection_dim=32,
)
text_encoder = ClapTextModelWithProjection(text_encoder_config)
tokenizer = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta", model_max_length=77)
vocoder_config = SpeechT5HifiGanConfig(
model_in_dim=8,
sampling_rate=16000,
upsample_initial_channel=16,
upsample_rates=[2, 2],
upsample_kernel_sizes=[4, 4],
resblock_kernel_sizes=[3, 7],
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]],
normalize_before=False,
)
vocoder = SpeechT5HifiGan(vocoder_config)
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"vocoder": vocoder,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A hammer hitting a wooden surface",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
}
return inputs
def test_audioldm_ddim(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
audioldm_pipe = AudioLDMPipeline(**components)
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
output = audioldm_pipe(**inputs)
audio = output.audios[0]
assert audio.ndim == 1
assert len(audio) == 256
audio_slice = audio[:10]
expected_slice = np.array(
[-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033]
)
assert np.abs(audio_slice - expected_slice).max() < 1e-2
def test_audioldm_prompt_embeds(self):
components = self.get_dummy_components()
audioldm_pipe = AudioLDMPipeline(**components)
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
inputs["prompt"] = 3 * [inputs["prompt"]]
# forward
output = audioldm_pipe(**inputs)
audio_1 = output.audios[0]
inputs = self.get_dummy_inputs(torch_device)
prompt = 3 * [inputs.pop("prompt")]
text_inputs = audioldm_pipe.tokenizer(
prompt,
padding="max_length",
max_length=audioldm_pipe.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_inputs = text_inputs["input_ids"].to(torch_device)
prompt_embeds = audioldm_pipe.text_encoder(
text_inputs,
)
prompt_embeds = prompt_embeds.text_embeds
# additional L_2 normalization over each hidden-state
prompt_embeds = F.normalize(prompt_embeds, dim=-1)
inputs["prompt_embeds"] = prompt_embeds
# forward
output = audioldm_pipe(**inputs)
audio_2 = output.audios[0]
assert np.abs(audio_1 - audio_2).max() < 1e-2
def test_audioldm_negative_prompt_embeds(self):
components = self.get_dummy_components()
audioldm_pipe = AudioLDMPipeline(**components)
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
negative_prompt = 3 * ["this is a negative prompt"]
inputs["negative_prompt"] = negative_prompt
inputs["prompt"] = 3 * [inputs["prompt"]]
# forward
output = audioldm_pipe(**inputs)
audio_1 = output.audios[0]
inputs = self.get_dummy_inputs(torch_device)
prompt = 3 * [inputs.pop("prompt")]
embeds = []
for p in [prompt, negative_prompt]:
text_inputs = audioldm_pipe.tokenizer(
p,
padding="max_length",
max_length=audioldm_pipe.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_inputs = text_inputs["input_ids"].to(torch_device)
text_embeds = audioldm_pipe.text_encoder(
text_inputs,
)
text_embeds = text_embeds.text_embeds
# additional L_2 normalization over each hidden-state
text_embeds = F.normalize(text_embeds, dim=-1)
embeds.append(text_embeds)
inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds
# forward
output = audioldm_pipe(**inputs)
audio_2 = output.audios[0]
assert np.abs(audio_1 - audio_2).max() < 1e-2
def test_audioldm_negative_prompt(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
audioldm_pipe = AudioLDMPipeline(**components)
audioldm_pipe = audioldm_pipe.to(device)
audioldm_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
negative_prompt = "egg cracking"
output = audioldm_pipe(**inputs, negative_prompt=negative_prompt)
audio = output.audios[0]
assert audio.ndim == 1
assert len(audio) == 256
audio_slice = audio[:10]
expected_slice = np.array(
[-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032]
)
assert np.abs(audio_slice - expected_slice).max() < 1e-2
def test_audioldm_num_waveforms_per_prompt(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
audioldm_pipe = AudioLDMPipeline(**components)
audioldm_pipe = audioldm_pipe.to(device)
audioldm_pipe.set_progress_bar_config(disable=None)
prompt = "A hammer hitting a wooden surface"
# test num_waveforms_per_prompt=1 (default)
audios = audioldm_pipe(prompt, num_inference_steps=2).audios
assert audios.shape == (1, 256)
# test num_waveforms_per_prompt=1 (default) for batch of prompts
batch_size = 2
audios = audioldm_pipe([prompt] * batch_size, num_inference_steps=2).audios
assert audios.shape == (batch_size, 256)
# test num_waveforms_per_prompt for single prompt
num_waveforms_per_prompt = 2
audios = audioldm_pipe(prompt, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt).audios
assert audios.shape == (num_waveforms_per_prompt, 256)
# test num_waveforms_per_prompt for batch of prompts
batch_size = 2
audios = audioldm_pipe(
[prompt] * batch_size, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt
).audios
assert audios.shape == (batch_size * num_waveforms_per_prompt, 256)
def test_audioldm_audio_length_in_s(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
audioldm_pipe = AudioLDMPipeline(**components)
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe.set_progress_bar_config(disable=None)
vocoder_sampling_rate = audioldm_pipe.vocoder.config.sampling_rate
inputs = self.get_dummy_inputs(device)
output = audioldm_pipe(audio_length_in_s=0.016, **inputs)
audio = output.audios[0]
assert audio.ndim == 1
assert len(audio) / vocoder_sampling_rate == 0.016
output = audioldm_pipe(audio_length_in_s=0.032, **inputs)
audio = output.audios[0]
assert audio.ndim == 1
assert len(audio) / vocoder_sampling_rate == 0.032
def test_audioldm_vocoder_model_in_dim(self):
components = self.get_dummy_components()
audioldm_pipe = AudioLDMPipeline(**components)
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe.set_progress_bar_config(disable=None)
prompt = ["hey"]
output = audioldm_pipe(prompt, num_inference_steps=1)
audio_shape = output.audios.shape
assert audio_shape == (1, 256)
config = audioldm_pipe.vocoder.config
config.model_in_dim *= 2
audioldm_pipe.vocoder = SpeechT5HifiGan(config).to(torch_device)
output = audioldm_pipe(prompt, num_inference_steps=1)
audio_shape = output.audios.shape
# waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
assert audio_shape == (1, 256)
def test_attention_slicing_forward_pass(self):
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=False)
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(test_mean_pixel_difference=False)
@slow
# @require_torch_gpu
class AudioLDMPipelineSlowTests(unittest.TestCase):
def tearDown(self):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
generator = torch.Generator(device=generator_device).manual_seed(seed)
latents = np.random.RandomState(seed).standard_normal((1, 8, 128, 16))
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
inputs = {
"prompt": "A hammer hitting a wooden surface",
"latents": latents,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 2.5,
}
return inputs
def test_audioldm(self):
audioldm_pipe = AudioLDMPipeline.from_pretrained("cvssp/audioldm")
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
inputs["num_inference_steps"] = 25
audio = audioldm_pipe(**inputs).audios[0]
assert audio.ndim == 1
assert len(audio) == 81920
audio_slice = audio[77230:77240]
expected_slice = np.array(
[-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315]
)
max_diff = np.abs(expected_slice - audio_slice).max()
assert max_diff < 1e-2
def test_audioldm_lms(self):
audioldm_pipe = AudioLDMPipeline.from_pretrained("cvssp/audioldm")
audioldm_pipe.scheduler = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config)
audioldm_pipe = audioldm_pipe.to(torch_device)
audioldm_pipe.set_progress_bar_config(disable=None)
inputs = self.get_inputs(torch_device)
audio = audioldm_pipe(**inputs).audios[0]
assert audio.ndim == 1
assert len(audio) == 81920
audio_slice = audio[27780:27790]
expected_slice = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212])
max_diff = np.abs(expected_slice - audio_slice).max()
assert max_diff < 1e-2