File size: 10,596 Bytes
68786bb 15683f3 d358257 68786bb 8247a3a 68786bb d358257 68786bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
# -*- coding: utf-8 -*-
import time
import uvicorn
import sys
import getopt
import json
import os
from pprint import pprint
import requests
import trafilatura
from trafilatura import bare_extraction
from concurrent.futures import ThreadPoolExecutor
import concurrent
import requests
import openai
import time
from datetime import datetime
from urllib.parse import urlparse
import platform
import urllib.parse
import free_ask_internet
from pydantic import BaseModel, Field
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from contextlib import asynccontextmanager
from typing import Any, Dict, List, Literal, Optional, Union
from sse_starlette.sse import ServerSentEvent, EventSourceResponse
from fastapi.responses import StreamingResponse
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class ModelCard(BaseModel):
id: str
object: str = "model"
created: int = Field(default_factory=lambda: int(time.time()))
owned_by: str = "owner"
root: Optional[str] = None
parent: Optional[str] = None
permission: Optional[list] = None
class ModelList(BaseModel):
object: str = "list"
data: List[ModelCard] = []
class ChatMessage(BaseModel):
role: Literal["user", "assistant", "system"]
content: str
class DeltaMessage(BaseModel):
role: Optional[Literal["user", "assistant", "system"]] = None
content: Optional[str] = None
class QueryRequest(BaseModel):
query:str
model: str
ask_type: Literal["search", "llm"]
llm_auth_token: Optional[str] = os.environ.get('OPENAI_API_KEY')
llm_base_url: Optional[str] = os.environ.get('OPENAI_BASE_URL')
using_custom_llm:Optional[bool] = False
lang:Optional[str] = "zh-CN"
class ChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessage]
temperature: Optional[float] = None
top_p: Optional[float] = None
max_length: Optional[int] = None
stream: Optional[bool] = False
class ChatCompletionResponseChoice(BaseModel):
index: int
message: ChatMessage
finish_reason: Literal["stop", "length"]
class ChatCompletionResponseStreamChoice(BaseModel):
index: int
delta: DeltaMessage
finish_reason: Optional[Literal["stop", "length"]]
class ChatCompletionResponse(BaseModel):
model: str
object: Literal["chat.completion", "chat.completion.chunk"]
choices: List[Union[ChatCompletionResponseChoice,
ChatCompletionResponseStreamChoice]]
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
class SearchItem(BaseModel):
url: str
icon_url: str
site_name:str
snippet:str
title:str
class SearchItemList(BaseModel):
search_items: List[SearchItem] = []
class SearchResp(BaseModel):
code:int
msg:str
data: List[SearchItem] = []
@app.get("/deem/v1/models", response_model=ModelList)
async def list_models():
global model_args
model_card = ModelCard(id="gpt-3.5-turbo")
return ModelList(data=[model_card])
@app.post("/deem/v1/chat/completions", response_model=ChatCompletionResponse)
async def create_chat_completion(request: ChatCompletionRequest):
global model, tokenizer
if request.messages[-1].role != "user":
raise HTTPException(status_code=400, detail="Invalid request")
query = request.messages[-1].content
if query[0] == '@':
#print("当前问题:gpt ---> {}".format(query))
generate = askgpt(request.messages,"",request.model)
else:
query = query[1:]
if len(request.messages) > 2:
message = '\n'.join([msg.content for msg in request.messages])
query = free_ask_internet.summary_gpt(message + "\n请根据以上的内容总结," + query +" 这个问题是要问什么?不要有模糊的代名词比如他/她之类的,不允许缺失上下文语境,需要明确提问的主题;最后只允许输出总结并完善语境的问题,不要有任何多余的文字!", request.model)
else:
pass
#print("当前问题:net ---> {}".format(query))
generate = predict(query, "", request.model)
return EventSourceResponse(generate, media_type="text/event-stream")
def askgpt(query, history, model_id):
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(role="assistant"),
finish_reason=None
)
chunk = ChatCompletionResponse(model=model_id, choices=[
choice_data], object="chat.completion.chunk")
yield "{}".format(chunk.json(exclude_unset=True))
new_response = ""
current_length = 0
for token in free_ask_internet.ask_gpt(query, model_id,):
new_response += token
if len(new_response) == current_length:
continue
new_text = new_response[current_length:]
current_length = len(new_response)
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(content=new_text,role="assistant"),
finish_reason=None
)
chunk = ChatCompletionResponse(model=model_id, choices=[
choice_data], object="chat.completion.chunk")
yield "{}".format(chunk.json(exclude_unset=True))
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(),
finish_reason="stop"
)
chunk = ChatCompletionResponse(model=model_id, choices=[
choice_data], object="chat.completion.chunk")
yield "{}".format(chunk.json(exclude_unset=True))
yield '[DONE]'
def predict(query: str, history: None, model_id: str):
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(role="assistant"),
finish_reason=None
)
chunk = ChatCompletionResponse(model=model_id, choices=[
choice_data], object="chat.completion.chunk")
yield "{}".format(chunk.json(exclude_unset=True))
new_response = ""
current_length = 0
for token in free_ask_internet.ask_internet(query=query, model=model_id):
new_response += token
if len(new_response) == current_length:
continue
new_text = new_response[current_length:]
current_length = len(new_response)
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(content=new_text,role="assistant"),
finish_reason=None
)
chunk = ChatCompletionResponse(model=model_id, choices=[
choice_data], object="chat.completion.chunk")
yield "{}".format(chunk.json(exclude_unset=True))
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(),
finish_reason="stop"
)
chunk = ChatCompletionResponse(model=model_id, choices=[
choice_data], object="chat.completion.chunk")
yield "{}".format(chunk.json(exclude_unset=True))
yield '[DONE]'
@app.post("/api/search/get_search_refs", response_model=SearchResp)
async def get_search_refs(request: QueryRequest):
global search_results
search_results = []
search_item_list = []
if request.ask_type == "search":
search_links,search_results = free_ask_internet.search_web_ref(request.query)
for search_item in search_links:
snippet = search_item.get("snippet")
url = search_item.get("url")
icon_url = search_item.get("icon_url")
site_name = search_item.get("site_name")
title = search_item.get("title")
si = SearchItem(snippet=snippet,url=url,icon_url=icon_url,site_name=site_name,title=title)
search_item_list.append(si)
resp = SearchResp(code=0,msg="success",data=search_item_list)
return resp
def generator(prompt:str, model:str, llm_auth_token:str,llm_base_url:str, using_custom_llm=False,is_failed=False):
if is_failed:
yield "搜索失败,没有返回结果"
else:
total_token = ""
for token in free_ask_internet.chat(prompt=prompt,model=model,llm_auth_token=llm_auth_token,llm_base_url=llm_base_url,using_custom_llm=using_custom_llm,stream=True):
total_token += token
yield token
@app.post("/api/search/stream/{search_uuid}")
async def stream(search_uuid:str,request: QueryRequest):
global search_results
if request.ask_type == "llm":
answer_language = ' Simplified Chinese '
if request.lang == "zh-CN":
answer_language = ' Simplified Chinese '
if request.lang == "zh-TW":
answer_language = ' Traditional Chinese '
if request.lang == "en-US":
answer_language = ' English '
prompt = ' You are a large language AI assistant develop by nash_su. Answer user question in ' + answer_language + '. And here is the user question: ' + request.query
generate = generator(prompt,model=request.model,llm_auth_token=request.llm_auth_token, llm_base_url=request.llm_base_url, using_custom_llm=request.using_custom_llm)
else:
prompt = None
limit_count = 10
while limit_count > 0:
try:
if len(search_results) > 0:
prompt = free_ask_internet.gen_prompt(request.query,search_results,lang=request.lang,context_length_limit=8000)
break
else:
limit_count -= 1
time.sleep(1)
except Exception as err:
limit_count -= 1
time.sleep(1)
total_token = ""
if prompt:
generate = generator(prompt,model=request.model,llm_auth_token=request.llm_auth_token, llm_base_url=request.llm_base_url, using_custom_llm=request.using_custom_llm)
else:
generate = generator(prompt,model=request.model,llm_auth_token=request.llm_auth_token,llm_base_url=request.llm_base_url, using_custom_llm=request.using_custom_llm,is_failed=True)
# return EventSourceResponse(generate, media_type="text/event-stream")
return StreamingResponse(generate, media_type="text/event-stream")
def main():
port = 8000
search_results = []
uvicorn.run(app, host='0.0.0.0', port=port, workers=1)
if __name__ == "__main__":
main()
|