deepakkaura26 commited on
Commit
26db8ef
1 Parent(s): 44506b5

Delete dpm1.py

Browse files
Files changed (1) hide show
  1. dpm1.py +0 -61
dpm1.py DELETED
@@ -1,61 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """dpm1
3
-
4
- Automatically generated by Colaboratory.
5
-
6
- Original file is located at
7
- https://colab.research.google.com/drive/1PJnjffQq5PpvzMoY1aB5uggxb35r11Ut
8
- """
9
-
10
- #!pip install streamlit
11
-
12
- #!pip install transformers
13
-
14
- import streamlit as st
15
- from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
16
-
17
- model_name = "EleutherAI/gpt-neo-1.3B"
18
- tokenizer = AutoTokenizer.from_pretrained(model_name)
19
- model = AutoModelForCausalLM.from_pretrained(model_name)
20
- generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
21
-
22
- def generate_job_posting(position, job_type, skillset, company_name, work_experience, job_location, job_benefits, field, currency, currency_format, package, communication, notice_period, qualifications, responsibility):
23
- context = f"{company_name} is hiring a {position} for a {job_type} position in {job_location}. The ideal candidate will have at least {work_experience} years of experience in {field}, and should be proficient in {skillset}. The job responsibility includes:\n- {responsibility}\nWe offer a {package} package in currency format {currency_format}. The successful candidate will be expected to maintain excellent communication with clients and colleagues. The notice period for this role is {notice_period}, and applicants should have the following qualifications: {qualifications}."
24
- output = generator(context, max_length=240, do_sample=True, temperature=0.7, num_return_sequences=3)
25
- def score_output(output_text):
26
- sentences = output_text.split('.')
27
- avg_sentence_length = sum(len(s.strip()) for s in sentences) / len(sentences)
28
- return 1.0 / avg_sentence_length
29
- sorted_outputs = sorted(output, key=lambda x: score_output(x['generated_text']), reverse=True)
30
- best_output = sorted_outputs[0]
31
- output_text = best_output['generated_text'].replace('- job responsibility', f"\n\n- {responsibility}")
32
- paragraphs = output_text.split('\n\n')
33
- output_text = '\n\n'.join('\n' + p for p in paragraphs)
34
- return output_text
35
-
36
- st.title("Job Posting Generator")
37
-
38
- position = st.text_input("Enter Position for Job Posting:")
39
- job_type = st.text_input("Enter Job Type:")
40
- skillset = st.text_input("Enter Skillset:")
41
- company_name = st.text_input("Enter Company Name:")
42
- work_experience = st.text_input("Enter Required Work Experience (in years):")
43
- job_location = st.text_input("Enter job Location:")
44
- job_benefits = st.text_input("Enter job benefits:")
45
- field = st.text_input("Enter job field:")
46
- currency = st.text_input("Enter Currency:")
47
- currency_format = st.text_input("Enter Currency Format:")
48
- package = st.text_input("Enter Package:")
49
- communication = st.text_input("Enter Communication:")
50
- notice_period = st.text_input("Enter Notice Period:")
51
- qualifications = st.text_input("Enter Qualifications:")
52
- responsibility = st.text_area("Enter Job Responsibility:")
53
-
54
- if st.button("Generate Job Posting"):
55
- try:
56
- output_text = generate_job_posting(position, job_type, skillset, company_name, work_experience, job_location, job_benefits, field, currency, currency_format, package, communication, notice_period, qualifications, responsibility)
57
- st.success(output_text)
58
- except ValueError as e:
59
- st.error(f"Error: {e}")
60
- except Exception as e:
61
- st.error(f"An error occurred: {e}")