import glob import os.path import tempfile import gradio as gr from PIL import Image from attack import Attacker, make_args def attack_given_image(image: Image.Image, target: str, steps: int, eps: float, step_size: float, progress=gr.Progress()): if image.mode != 'RGB': image = image.convert('RGB') with tempfile.TemporaryDirectory() as td_input, tempfile.TemporaryDirectory() as td_output: image_filename = os.path.join(td_input, 'image.png') image.save(image_filename) def _step_func(current_step: int): progress(current_step / steps) args = make_args([ image_filename, '--out_dir', str(td_output), '--target', target, '--eps', str(eps), '--step_size', str(step_size), '--steps', str(steps), ]) attacker = Attacker(args) before_prediction = attacker.image_predict(image) attacker.attack(args.inputs, _step_func) output_filename, *_ = glob.glob(os.path.join(td_output, '*.png')) output_image = Image.open(output_filename) after_prediction = attacker.image_predict(output_image) return before_prediction, after_prediction, output_image if __name__ == '__main__': with gr.Blocks() as demo: with gr.Row(): gr.HTML('
' ' Too slow? Try this locally: ' ' ' ' Github - 7eu7d7/anime-ai-detect-fucker' ' .' ' or' ' ' ' ' ' ' '
') with gr.Row(): with gr.Column(): gr_input_image = gr.Image(type='pil', label='Original Image') with gr.Row(): gr_attack_target = gr.Radio(['auto', 'ai', 'human', 'same'], value='auto', label='Attack Target') gr_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label='Steps') with gr.Row(): gr_eps = gr.Slider(label="eps (Noise intensity)", minimum=1, maximum=16, step=1, value=1) gr_noise_step_size = gr.Slider(label="Noise step size", minimum=0.001, maximum=16, step=0.001, value=0.136) gr_btn_submit = gr.Button(value='Attack This Image', variant='primary') with gr.Column(): with gr.Row(): gr_before_prediction = gr.Label(label='Before Prediction') gr_after_prediction = gr.Label(label='After Prediction') gr_output_image = gr.Image(type='pil', label='Attacked Image') gr_btn_submit.click( attack_given_image, inputs=[gr_input_image, gr_attack_target, gr_steps, gr_eps, gr_noise_step_size], outputs=[gr_before_prediction, gr_after_prediction, gr_output_image], ) demo.queue(os.cpu_count()).launch()