File size: 6,930 Bytes
90b4364
 
 
 
89047b5
90b4364
522af51
3903f4f
ebc32f0
90b4364
 
 
 
 
 
 
 
 
4818b14
90b4364
 
89047b5
90b4364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
522af51
 
 
 
 
 
 
 
7e6465f
522af51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebc32f0
 
 
 
 
4818b14
ebc32f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89047b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3903f4f
 
 
 
 
4818b14
3903f4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90b4364
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os

import gradio as gr

from censor import _CENSOR_MODELS, _DEFAULT_CENSOR_MODEL, _gr_detect_censors
from face import _FACE_MODELS, _DEFAULT_FACE_MODEL, _gr_detect_faces
from head import _gr_detect_heads, _HEAD_MODELS, _DEFAULT_HEAD_MODEL
from manbits import _MANBIT_MODELS, _DEFAULT_MANBIT_MODEL, _gr_detect_manbits
from person import _PERSON_MODELS, _DEFAULT_PERSON_MODEL, _gr_detect_person

if __name__ == '__main__':
    with gr.Blocks() as demo:
        with gr.Tabs():
            with gr.Tab('Face Detection'):
                with gr.Row():
                    with gr.Column():
                        gr_face_input_image = gr.Image(type='pil', label='Original Image')
                        gr_face_model = gr.Dropdown(_FACE_MODELS, value=_DEFAULT_FACE_MODEL, label='Model')
                        gr_face_infer_size = gr.Slider(480, 960, value=640, step=32, label='Max Infer Size')
                        with gr.Row():
                            gr_face_iou_threshold = gr.Slider(0.0, 1.0, 0.7, label='IOU Threshold')
                            gr_face_score_threshold = gr.Slider(0.0, 1.0, 0.25, label='Score Threshold')

                        gr_face_submit = gr.Button(value='Submit', variant='primary')

                    with gr.Column():
                        gr_face_output_image = gr.Image(type='pil', label="Labeled")

                    gr_face_submit.click(
                        _gr_detect_faces,
                        inputs=[
                            gr_face_input_image, gr_face_model,
                            gr_face_infer_size, gr_face_score_threshold, gr_face_iou_threshold,
                        ],
                        outputs=[gr_face_output_image],
                    )

            with gr.Tab('Head Detection'):
                with gr.Row():
                    with gr.Column():
                        gr_head_input_image = gr.Image(type='pil', label='Original Image')
                        gr_head_model = gr.Dropdown(_HEAD_MODELS, value=_DEFAULT_HEAD_MODEL, label='Model')
                        gr_head_infer_size = gr.Slider(480, 960, value=640, step=32, label='Max Infer Size')
                        with gr.Row():
                            gr_head_iou_threshold = gr.Slider(0.0, 1.0, 0.7, label='IOU Threshold')
                            gr_head_score_threshold = gr.Slider(0.0, 1.0, 0.3, label='Score Threshold')

                        gr_head_submit = gr.Button(value='Submit', variant='primary')

                    with gr.Column():
                        gr_head_output_image = gr.Image(type='pil', label="Labeled")

                    gr_head_submit.click(
                        _gr_detect_heads,
                        inputs=[
                            gr_head_input_image, gr_head_model,
                            gr_head_infer_size, gr_head_score_threshold, gr_head_iou_threshold,
                        ],
                        outputs=[gr_head_output_image],
                    )

            with gr.Tab('Person Detection'):
                with gr.Row():
                    with gr.Column():
                        gr_person_input_image = gr.Image(type='pil', label='Original Image')
                        gr_person_model = gr.Dropdown(_PERSON_MODELS, value=_DEFAULT_PERSON_MODEL, label='Model')
                        gr_person_infer_size = gr.Slider(480, 960, value=640, step=32, label='Max Infer Size')
                        with gr.Row():
                            gr_person_iou_threshold = gr.Slider(0.0, 1.0, 0.5, label='IOU Threshold')
                            gr_person_score_threshold = gr.Slider(0.0, 1.0, 0.3, label='Score Threshold')

                        gr_person_submit = gr.Button(value='Submit', variant='primary')

                    with gr.Column():
                        gr_person_output_image = gr.Image(type='pil', label="Labeled")

                    gr_person_submit.click(
                        _gr_detect_person,
                        inputs=[
                            gr_person_input_image, gr_person_model,
                            gr_person_infer_size, gr_person_score_threshold, gr_person_iou_threshold,
                        ],
                        outputs=[gr_person_output_image],
                    )

            with gr.Tab('Censor Point Detection'):
                with gr.Row():
                    with gr.Column():
                        gr_censor_input_image = gr.Image(type='pil', label='Original Image')
                        gr_censor_model = gr.Dropdown(_CENSOR_MODELS, value=_DEFAULT_CENSOR_MODEL, label='Model')
                        gr_censor_infer_size = gr.Slider(480, 960, value=640, step=32, label='Max Infer Size')
                        with gr.Row():
                            gr_censor_iou_threshold = gr.Slider(0.0, 1.0, 0.5, label='IOU Threshold')
                            gr_censor_score_threshold = gr.Slider(0.0, 1.0, 0.35, label='Score Threshold')

                        gr_censor_submit = gr.Button(value='Submit', variant='primary')

                    with gr.Column():
                        gr_censor_output_image = gr.Image(type='pil', label="Labeled")

                    gr_censor_submit.click(
                        _gr_detect_censors,
                        inputs=[
                            gr_censor_input_image, gr_censor_model,
                            gr_censor_infer_size, gr_censor_score_threshold, gr_censor_iou_threshold,
                        ],
                        outputs=[gr_censor_output_image],
                    )

            with gr.Tab('Manbits Detection'):
                with gr.Row():
                    with gr.Column():
                        gr_manbit_input_image = gr.Image(type='pil', label='Original Image')
                        gr_manbit_model = gr.Dropdown(_MANBIT_MODELS, value=_DEFAULT_MANBIT_MODEL, label='Model')
                        gr_manbit_infer_size = gr.Slider(480, 960, value=640, step=32, label='Max Infer Size')
                        with gr.Row():
                            gr_manbit_iou_threshold = gr.Slider(0.0, 1.0, 0.7, label='IOU Threshold')
                            gr_manbit_score_threshold = gr.Slider(0.0, 1.0, 0.25, label='Score Threshold')

                        gr_manbit_submit = gr.Button(value='Submit', variant='primary')

                    with gr.Column():
                        gr_manbit_output_image = gr.Image(type='pil', label="Labeled")

                    gr_manbit_submit.click(
                        _gr_detect_manbits,
                        inputs=[
                            gr_manbit_input_image, gr_manbit_model,
                            gr_manbit_infer_size, gr_manbit_score_threshold, gr_manbit_iou_threshold,
                        ],
                        outputs=[gr_manbit_output_image],
                    )

    demo.queue(os.cpu_count()).launch()