Spaces:
Running
Running
import os | |
import gradio as gr | |
from face import _FACE_MODELS, _DEFAULT_FACE_MODEL, _gr_detect_faces | |
from manbits import _MANBIT_MODELS, _DEFAULT_MANBIT_MODEL, _gr_detect_manbits | |
from person import _PERSON_MODELS, _DEFAULT_PERSON_MODEL, _gr_detect_person | |
if __name__ == '__main__': | |
with gr.Blocks() as demo: | |
with gr.Tabs(): | |
with gr.Tab('Face Detection'): | |
with gr.Row(): | |
with gr.Column(): | |
gr_face_input_image = gr.Image(type='pil', label='Original Image') | |
gr_face_model = gr.Dropdown(_FACE_MODELS, value=_DEFAULT_FACE_MODEL, label='Model') | |
gr_face_infer_size = gr.Slider(480, 1600, value=1216, step=32, label='Max Infer Size') | |
with gr.Row(): | |
gr_face_iou_threshold = gr.Slider(0.0, 1.0, 0.7, label='IOU Threshold') | |
gr_face_score_threshold = gr.Slider(0.0, 1.0, 0.25, label='Score Threshold') | |
gr_face_submit = gr.Button(value='Submit', variant='primary') | |
with gr.Column(): | |
gr_face_output_image = gr.Image(type='pil', label="Labeled") | |
gr_face_submit.click( | |
_gr_detect_faces, | |
inputs=[ | |
gr_face_input_image, gr_face_model, | |
gr_face_infer_size, gr_face_score_threshold, gr_face_iou_threshold, | |
], | |
outputs=[gr_face_output_image], | |
) | |
with gr.Tab('Person Detection'): | |
with gr.Row(): | |
with gr.Column(): | |
gr_person_input_image = gr.Image(type='pil', label='Original Image') | |
gr_person_model = gr.Dropdown(_PERSON_MODELS, value=_DEFAULT_PERSON_MODEL, label='Model') | |
gr_person_infer_size = gr.Slider(480, 1600, value=1216, step=32, label='Max Infer Size') | |
with gr.Row(): | |
gr_person_iou_threshold = gr.Slider(0.0, 1.0, 0.5, label='IOU Threshold') | |
gr_person_score_threshold = gr.Slider(0.0, 1.0, 0.3, label='Score Threshold') | |
gr_person_submit = gr.Button(value='Submit', variant='primary') | |
with gr.Column(): | |
gr_person_output_image = gr.Image(type='pil', label="Labeled") | |
gr_person_submit.click( | |
_gr_detect_person, | |
inputs=[ | |
gr_person_input_image, gr_person_model, | |
gr_person_infer_size, gr_person_score_threshold, gr_person_iou_threshold, | |
], | |
outputs=[gr_person_output_image], | |
) | |
with gr.Tab('Manbits Detection'): | |
with gr.Row(): | |
with gr.Column(): | |
gr_manbit_input_image = gr.Image(type='pil', label='Original Image') | |
gr_manbit_model = gr.Dropdown(_MANBIT_MODELS, value=_DEFAULT_MANBIT_MODEL, label='Model') | |
gr_manbit_infer_size = gr.Slider(480, 1600, value=1216, step=32, label='Max Infer Size') | |
with gr.Row(): | |
gr_manbit_iou_threshold = gr.Slider(0.0, 1.0, 0.7, label='IOU Threshold') | |
gr_manbit_score_threshold = gr.Slider(0.0, 1.0, 0.25, label='Score Threshold') | |
gr_manbit_submit = gr.Button(value='Submit', variant='primary') | |
with gr.Column(): | |
gr_manbit_output_image = gr.Image(type='pil', label="Labeled") | |
gr_manbit_submit.click( | |
_gr_detect_manbits, | |
inputs=[ | |
gr_manbit_input_image, gr_manbit_model, | |
gr_manbit_infer_size, gr_manbit_score_threshold, gr_manbit_iou_threshold, | |
], | |
outputs=[gr_manbit_output_image], | |
) | |
demo.queue(os.cpu_count()).launch() | |