Spaces:
Running
Running
import torch | |
from transformers import pipeline, SiglipModel, AutoProcessor | |
import numpy as np | |
import gradio as gr | |
clip_checkpoint = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K" | |
clip_detector = pipeline(model=clip_checkpoint, task="zero-shot-image-classification") | |
def postprocess(output): | |
return {out["label"]: float(out["score"]) for out in output} | |
def infer(image, candidate_labels): | |
candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",")] | |
clip_out = clip_detector(image, candidate_labels=candidate_labels) | |
return postprocess(clip_out) | |
with gr.Blocks() as demo: | |
gr.Markdown("# Compare CLIP and SigLIP") | |
gr.Markdown("Compare the performance of CLIP and SigLIP on zero-shot classification in this Space 👇") | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(type="pil") | |
text_input = gr.Textbox(label="Input a list of labels") | |
run_button = gr.Button("Run", visible=True) | |
with gr.Column(): | |
clip_output = gr.Label(label = "CLIP Output", num_top_classes=15) | |
examples = [["./baklava.jpg", "baklava, souffle, tiramisu"]] | |
gr.Examples( | |
examples = examples, | |
inputs=[image_input, text_input], | |
outputs=[clip_output, | |
], | |
fn=infer, | |
cache_examples=True | |
) | |
run_button.click(fn=infer, | |
inputs=[image_input, text_input], | |
outputs=[clip_output, | |
]) | |
demo.launch() |