File size: 12,230 Bytes
4dc3e99
 
 
 
 
 
 
b6d8eef
4dc3e99
b6d8eef
4dc3e99
 
 
 
 
 
ff76a8d
 
 
4dc3e99
92dc96b
 
 
 
 
4dc3e99
 
 
077a255
92dc96b
 
 
 
 
 
0fb7549
 
 
92dc96b
2d9ca56
92dc96b
 
 
 
 
 
 
 
4dc3e99
 
 
eb570bb
4dc3e99
 
 
5a3ed26
4dc3e99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a3ed26
4dc3e99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92dc96b
4e7aed4
 
4dc3e99
 
 
3a575e4
92dc96b
 
 
4dc3e99
 
 
 
 
3a575e4
4dc3e99
3a575e4
 
4e7aed4
 
 
01bc330
4e7aed4
ff64068
 
01bc330
4e7aed4
ff64068
 
4e7aed4
 
ff64068
 
 
 
4dc3e99
 
 
 
 
 
 
 
 
 
 
0e089a6
4dc3e99
 
 
0e089a6
4dc3e99
 
3a575e4
c7ffed2
3a575e4
4dc3e99
0e089a6
3a575e4
 
4dc3e99
 
 
 
c472fe6
4dc3e99
 
 
 
 
92dc96b
4dc3e99
 
 
 
3a575e4
01bc330
4dc3e99
 
 
3a575e4
4dc3e99
 
 
3a575e4
 
4dc3e99
3a575e4
4dc3e99
3a575e4
 
4dc3e99
3a575e4
 
4dc3e99
3a575e4
 
 
 
 
 
 
4dc3e99
2d9ca56
4dc3e99
 
 
3a575e4
2d9ca56
3a575e4
92dc96b
 
288f88f
4dc3e99
01bc330
4dc3e99
ff64068
 
4dc3e99
ff64068
4dc3e99
 
 
 
92dc96b
 
 
 
 
 
 
 
 
3a575e4
 
4dc3e99
 
 
 
3a575e4
4dc3e99
92dc96b
3a575e4
4dc3e99
 
 
 
caa6a5d
4dc3e99
288f88f
caa6a5d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import json
import os
import random
from functools import partial
from pathlib import Path
from typing import List

import deepinv as dinv
import gradio as gr
import torch
from PIL import Image
from torchvision import transforms

from evals import PhysicsWithGenerator, EvalModel, BaselineModel, EvalDataset, Metric


DEVICE_STR = 'cuda'


### Gradio Utils

def generate_imgs_from_dataset(dataset: EvalDataset, idx: int,
                               model: EvalModel, baseline: BaselineModel,
                               physics: PhysicsWithGenerator, use_gen: bool,
                               metrics: List[Metric]):
    ### Load 1 image
    x = dataset[idx]    # shape : (3, 256, 256)
    x = x.unsqueeze(0)  # shape : (1, 3, 256, 256)

    return generate_imgs(x, model, baseline, physics, use_gen, metrics)

def generate_imgs_from_user(image,
                            model: EvalModel, baseline: BaselineModel,
                            physics: PhysicsWithGenerator, use_gen: bool,
                            metrics: List[Metric]):
    if image is None:
        return None, None, None, None, None, None, None, None

    # PIL image -> torch.Tensor
    x = transforms.ToTensor()(image).unsqueeze(0).to('cuda')

    return generate_imgs(x, model, baseline, physics, use_gen, metrics)
    
def generate_imgs(x: torch.Tensor,
                  model: EvalModel, baseline: BaselineModel,
                  physics: PhysicsWithGenerator, use_gen: bool,
                  metrics: List[Metric]):

    with torch.no_grad():
        ### Compute y
        y = physics(x, use_gen)  # possible reduction in img shape due to Blurring

        ### Compute x_hat
        out = model(y=y, physics=physics.physics)
        out_baseline = baseline(y=y, physics=physics.physics)

        ### Process tensors before metric computation
        if "Blur" in physics.name:
            w_1, w_2 = (x.shape[2] - y.shape[2]) // 2, (x.shape[2] + y.shape[2]) // 2
            h_1, h_2 = (x.shape[3] - y.shape[3]) // 2, (x.shape[3] + y.shape[3]) // 2

            x = x[..., w_1:w_2, h_1:h_2]
            out = out[..., w_1:w_2, h_1:h_2]
            if out_baseline.shape != out.shape:
                out_baseline = out_baseline[..., w_1:w_2, h_1:h_2]

        ### Metrics
        metrics_y = ""
        metrics_out = ""
        metrics_out_baseline = ""
        for metric in metrics:
            if y.shape == x.shape:
                metrics_y += f"{metric.name} = {metric(y, x).item():.4f}" + "\n"
            metrics_out += f"{metric.name} = {metric(out, x).item():.4f}" + "\n"
            metrics_out_baseline += f"{metric.name} = {metric(out_baseline, x).item():.4f}" + "\n"

    ### Process y when y shape is different from x shape
    if physics.name == "MRI" or "SR" in physics.name:
        y_plot = physics.physics.prox_l2(physics.physics.A_adjoint(y), y, 1e4)
    else:
        y_plot = y.clone()

    ### Processing images for plotting :
    #     - clip value outside of [0,1]
    #     - shape (1, C, H, W) -> (C, H, W)
    #     - torch.Tensor object -> Pil object
    process_img = partial(dinv.utils.plotting.preprocess_img, rescale_mode="clip")
    to_pil = transforms.ToPILImage()
    x = to_pil(process_img(x)[0].to('cpu'))
    y = to_pil(process_img(y_plot)[0].to('cpu'))
    out = to_pil(process_img(out)[0].to('cpu'))
    out_baseline = to_pil(process_img(out_baseline)[0].to('cpu'))

    return x, y, out, out_baseline, physics.display_saved_params(), metrics_y, metrics_out, metrics_out_baseline

def generate_random_imgs_from_dataset(dataset: EvalDataset,
                                        model: EvalModel,
                                        baseline: BaselineModel,
                                        physics: PhysicsWithGenerator,
                                        use_gen: bool,
                                        metrics: List[Metric]):
    idx = random.randint(0, len(dataset)-1)
    x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline = generate_imgs_from_dataset(
        dataset, idx, model, baseline, physics, use_gen, metrics
        )
    return idx, x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline


get_list_metrics_on_DEVICE_STR = partial(Metric.get_list_metrics, device_str=DEVICE_STR)
get_eval_model_on_DEVICE_STR = partial(EvalModel, device_str=DEVICE_STR)
get_baseline_model_on_DEVICE_STR = partial(BaselineModel, device_str=DEVICE_STR)
get_dataset_on_DEVICE_STR = partial(EvalDataset, device_str=DEVICE_STR)
get_physics_on_DEVICE_STR = partial(PhysicsWithGenerator, device_str=DEVICE_STR)

AVAILABLE_PHYSICS = PhysicsWithGenerator.all_physics
def get_dataset(dataset_name):
    global AVAILABLE_PHYSICS
    if dataset_name == 'MRI':
        AVAILABLE_PHYSICS = ['MRI']
        baseline_name = 'DPIR_MRI'
        physics_name = 'MRI'
    elif dataset_name == 'CT':
        AVAILABLE_PHYSICS = ['CT']
        baseline_name = 'DPIR_CT'
        physics_name = 'CT'
    else:
        AVAILABLE_PHYSICS = ['MotionBlur_easy', 'MotionBlur_medium', 'MotionBlur_hard', 'GaussianBlur_easy', 'GaussianBlur_medium', 'GaussianBlur_hard']
        baseline_name = 'DPIR'
        physics_name = 'MotionBlur_easy'
    return get_dataset_on_DEVICE_STR(dataset_name), get_physics_on_DEVICE_STR(physics_name), get_baseline_model_on_DEVICE_STR(baseline_name)


### Gradio Blocks interface

# Define custom CSS
custom_css = """
.fixed-textbox textarea {
    height: 90px !important;  /* Adjust height to fit exactly 4 lines */
    overflow: scroll;         /* Add a scroll bar if necessary */
    resize: none;             /* User can resize vertically the textbox */
}
"""

title = "Inverse problem playground"  # displayed on gradio tab and in the gradio page
with gr.Blocks(title=title, css=custom_css) as interface:
    gr.Markdown("## " + title)

    # Loading things
    model_a_placeholder = gr.State(lambda: get_eval_model_on_DEVICE_STR("unext_emb_physics_config_C", ""))  # lambda expression to instanciate a callable in a gr.State
    model_b_placeholder = gr.State(lambda: get_baseline_model_on_DEVICE_STR("DPIR"))  # lambda expression to instanciate a callable in a gr.State
    dataset_placeholder = gr.State(lambda: get_dataset_on_DEVICE_STR("Natural"))
    physics_placeholder = gr.State(lambda: get_physics_on_DEVICE_STR("MotionBlur_easy"))  # lambda expression to instanciate a callable in a gr.State
    metrics_placeholder = gr.State(get_list_metrics_on_DEVICE_STR(["PSNR"]))

    @gr.render(inputs=[dataset_placeholder, physics_placeholder, metrics_placeholder])
    def dynamic_layout(dataset, physics, metrics):
        ### LAYOUT
        dataset_name = dataset.name
        physics_name = physics.name
        metric_names = [metric.name for metric in metrics]

        # Components: Inputs/Outputs + Load EvalDataset/PhysicsWithGenerator/EvalModel/BaselineModel
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    with gr.Column():
                        clean = gr.Image(label=f"{dataset_name} IMAGE", interactive=True)
                        physics_params = gr.Textbox(label="Physics parameters", elem_classes=["fixed-textbox"], value=physics.display_saved_params())
                    with gr.Column():
                        y_image = gr.Image(label=f"{physics_name} IMAGE", interactive=False)
                        y_metrics = gr.Textbox(label="Metrics(y, x)", elem_classes=["fixed-textbox"],)

                choose_physics = gr.Radio(choices=AVAILABLE_PHYSICS,
                                          label="List of PhysicsWithGenerator",
                                          value=physics_name)
                with gr.Row():
                    key_selector = gr.Dropdown(choices=list(physics.saved_params["updatable_params"].keys()),
                                               label="Updatable Parameter Key",
                                               scale=2)
                    value_text = gr.Textbox(label="Update Value", scale=2)
                    update_button = gr.Button("Manually update parameter value", scale=1)

            with gr.Column():
                with gr.Row():
                    with gr.Column():
                        model_a_out = gr.Image(label="RAM OUTPUT", interactive=False)
                        out_a_metric = gr.Textbox(label="Metrics(RAM(y, physics), x)", elem_classes=["fixed-textbox"])
                    with gr.Column():
                        model_b_out = gr.Image(label="DPIR OUTPUT", interactive=False)
                        out_b_metric = gr.Textbox(label="Metrics(DPIR(y, physics), x)", elem_classes=["fixed-textbox"])
                with gr.Row():
                    choose_dataset = gr.Radio(choices=EvalDataset.all_datasets,
                                              label="List of EvalDataset",
                                              value=dataset_name,
                                              scale=2)
                    idx_slider = gr.Slider(minimum=0, maximum=len(dataset)-1, step=1, label="Sample index", scale=1)

        # Components: Load Metric + Load image Buttons
        with gr.Row():
            with gr.Column(scale=3):
                choose_metrics = gr.CheckboxGroup(choices=Metric.all_metrics,
                                                  value=metric_names,
                                                  label="Choose metrics you are interested")
            use_generator_button = gr.Checkbox(label="Generate valid physics parameters", scale=1)
            run_button = gr.Button("Run current image", scale=1)
            with gr.Column(scale=1):
                load_button = gr.Button("Load images from dataset...")
                load_random_button = gr.Button("Load randomly from dataset...")

        ### Event listeners
        choose_dataset.change(fn=get_dataset,
                              inputs=choose_dataset,
                              outputs=[dataset_placeholder, physics_placeholder, model_b_placeholder])
        choose_physics.change(fn=get_physics_on_DEVICE_STR,
                              inputs=choose_physics,
                              outputs=[physics_placeholder])
        update_button.click(fn=physics.update_and_display_params, inputs=[key_selector, value_text], outputs=physics_params)
        choose_metrics.change(fn=get_list_metrics_on_DEVICE_STR,
                              inputs=choose_metrics,
                              outputs=metrics_placeholder)
        run_button.click(fn=generate_imgs_from_user,
                         inputs=[clean,
                                 model_a_placeholder,
                                 model_b_placeholder,
                                 physics_placeholder,
                                 use_generator_button,
                                 metrics_placeholder],
                         outputs=[clean, y_image, model_a_out, model_b_out, physics_params, y_metrics, out_a_metric, out_b_metric])
        load_button.click(fn=generate_imgs_from_dataset,
                          inputs=[dataset_placeholder,
                                  idx_slider,
                                  model_a_placeholder,
                                  model_b_placeholder,
                                  physics_placeholder,
                                  use_generator_button,
                                  metrics_placeholder],
                          outputs=[clean, y_image, model_a_out, model_b_out, physics_params, y_metrics, out_a_metric, out_b_metric])
        load_random_button.click(fn=generate_random_imgs_from_dataset,
                                 inputs=[dataset_placeholder,
                                         model_a_placeholder,
                                         model_b_placeholder,
                                         physics_placeholder,
                                         use_generator_button,
                                         metrics_placeholder],
                                 outputs=[idx_slider, clean, y_image, model_a_out, model_b_out, physics_params, y_metrics, out_a_metric, out_b_metric])

interface.launch()