Spaces:
Running
on
T4
Running
on
T4
File size: 12,230 Bytes
4dc3e99 b6d8eef 4dc3e99 b6d8eef 4dc3e99 ff76a8d 4dc3e99 92dc96b 4dc3e99 077a255 92dc96b 0fb7549 92dc96b 2d9ca56 92dc96b 4dc3e99 eb570bb 4dc3e99 5a3ed26 4dc3e99 5a3ed26 4dc3e99 92dc96b 4e7aed4 4dc3e99 3a575e4 92dc96b 4dc3e99 3a575e4 4dc3e99 3a575e4 4e7aed4 01bc330 4e7aed4 ff64068 01bc330 4e7aed4 ff64068 4e7aed4 ff64068 4dc3e99 0e089a6 4dc3e99 0e089a6 4dc3e99 3a575e4 c7ffed2 3a575e4 4dc3e99 0e089a6 3a575e4 4dc3e99 c472fe6 4dc3e99 92dc96b 4dc3e99 3a575e4 01bc330 4dc3e99 3a575e4 4dc3e99 3a575e4 4dc3e99 3a575e4 4dc3e99 3a575e4 4dc3e99 3a575e4 4dc3e99 3a575e4 4dc3e99 2d9ca56 4dc3e99 3a575e4 2d9ca56 3a575e4 92dc96b 288f88f 4dc3e99 01bc330 4dc3e99 ff64068 4dc3e99 ff64068 4dc3e99 92dc96b 3a575e4 4dc3e99 3a575e4 4dc3e99 92dc96b 3a575e4 4dc3e99 caa6a5d 4dc3e99 288f88f caa6a5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import json
import os
import random
from functools import partial
from pathlib import Path
from typing import List
import deepinv as dinv
import gradio as gr
import torch
from PIL import Image
from torchvision import transforms
from evals import PhysicsWithGenerator, EvalModel, BaselineModel, EvalDataset, Metric
DEVICE_STR = 'cuda'
### Gradio Utils
def generate_imgs_from_dataset(dataset: EvalDataset, idx: int,
model: EvalModel, baseline: BaselineModel,
physics: PhysicsWithGenerator, use_gen: bool,
metrics: List[Metric]):
### Load 1 image
x = dataset[idx] # shape : (3, 256, 256)
x = x.unsqueeze(0) # shape : (1, 3, 256, 256)
return generate_imgs(x, model, baseline, physics, use_gen, metrics)
def generate_imgs_from_user(image,
model: EvalModel, baseline: BaselineModel,
physics: PhysicsWithGenerator, use_gen: bool,
metrics: List[Metric]):
if image is None:
return None, None, None, None, None, None, None, None
# PIL image -> torch.Tensor
x = transforms.ToTensor()(image).unsqueeze(0).to('cuda')
return generate_imgs(x, model, baseline, physics, use_gen, metrics)
def generate_imgs(x: torch.Tensor,
model: EvalModel, baseline: BaselineModel,
physics: PhysicsWithGenerator, use_gen: bool,
metrics: List[Metric]):
with torch.no_grad():
### Compute y
y = physics(x, use_gen) # possible reduction in img shape due to Blurring
### Compute x_hat
out = model(y=y, physics=physics.physics)
out_baseline = baseline(y=y, physics=physics.physics)
### Process tensors before metric computation
if "Blur" in physics.name:
w_1, w_2 = (x.shape[2] - y.shape[2]) // 2, (x.shape[2] + y.shape[2]) // 2
h_1, h_2 = (x.shape[3] - y.shape[3]) // 2, (x.shape[3] + y.shape[3]) // 2
x = x[..., w_1:w_2, h_1:h_2]
out = out[..., w_1:w_2, h_1:h_2]
if out_baseline.shape != out.shape:
out_baseline = out_baseline[..., w_1:w_2, h_1:h_2]
### Metrics
metrics_y = ""
metrics_out = ""
metrics_out_baseline = ""
for metric in metrics:
if y.shape == x.shape:
metrics_y += f"{metric.name} = {metric(y, x).item():.4f}" + "\n"
metrics_out += f"{metric.name} = {metric(out, x).item():.4f}" + "\n"
metrics_out_baseline += f"{metric.name} = {metric(out_baseline, x).item():.4f}" + "\n"
### Process y when y shape is different from x shape
if physics.name == "MRI" or "SR" in physics.name:
y_plot = physics.physics.prox_l2(physics.physics.A_adjoint(y), y, 1e4)
else:
y_plot = y.clone()
### Processing images for plotting :
# - clip value outside of [0,1]
# - shape (1, C, H, W) -> (C, H, W)
# - torch.Tensor object -> Pil object
process_img = partial(dinv.utils.plotting.preprocess_img, rescale_mode="clip")
to_pil = transforms.ToPILImage()
x = to_pil(process_img(x)[0].to('cpu'))
y = to_pil(process_img(y_plot)[0].to('cpu'))
out = to_pil(process_img(out)[0].to('cpu'))
out_baseline = to_pil(process_img(out_baseline)[0].to('cpu'))
return x, y, out, out_baseline, physics.display_saved_params(), metrics_y, metrics_out, metrics_out_baseline
def generate_random_imgs_from_dataset(dataset: EvalDataset,
model: EvalModel,
baseline: BaselineModel,
physics: PhysicsWithGenerator,
use_gen: bool,
metrics: List[Metric]):
idx = random.randint(0, len(dataset)-1)
x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline = generate_imgs_from_dataset(
dataset, idx, model, baseline, physics, use_gen, metrics
)
return idx, x, y, out, out_baseline, saved_params_str, metrics_y, metrics_out, metrics_out_baseline
get_list_metrics_on_DEVICE_STR = partial(Metric.get_list_metrics, device_str=DEVICE_STR)
get_eval_model_on_DEVICE_STR = partial(EvalModel, device_str=DEVICE_STR)
get_baseline_model_on_DEVICE_STR = partial(BaselineModel, device_str=DEVICE_STR)
get_dataset_on_DEVICE_STR = partial(EvalDataset, device_str=DEVICE_STR)
get_physics_on_DEVICE_STR = partial(PhysicsWithGenerator, device_str=DEVICE_STR)
AVAILABLE_PHYSICS = PhysicsWithGenerator.all_physics
def get_dataset(dataset_name):
global AVAILABLE_PHYSICS
if dataset_name == 'MRI':
AVAILABLE_PHYSICS = ['MRI']
baseline_name = 'DPIR_MRI'
physics_name = 'MRI'
elif dataset_name == 'CT':
AVAILABLE_PHYSICS = ['CT']
baseline_name = 'DPIR_CT'
physics_name = 'CT'
else:
AVAILABLE_PHYSICS = ['MotionBlur_easy', 'MotionBlur_medium', 'MotionBlur_hard', 'GaussianBlur_easy', 'GaussianBlur_medium', 'GaussianBlur_hard']
baseline_name = 'DPIR'
physics_name = 'MotionBlur_easy'
return get_dataset_on_DEVICE_STR(dataset_name), get_physics_on_DEVICE_STR(physics_name), get_baseline_model_on_DEVICE_STR(baseline_name)
### Gradio Blocks interface
# Define custom CSS
custom_css = """
.fixed-textbox textarea {
height: 90px !important; /* Adjust height to fit exactly 4 lines */
overflow: scroll; /* Add a scroll bar if necessary */
resize: none; /* User can resize vertically the textbox */
}
"""
title = "Inverse problem playground" # displayed on gradio tab and in the gradio page
with gr.Blocks(title=title, css=custom_css) as interface:
gr.Markdown("## " + title)
# Loading things
model_a_placeholder = gr.State(lambda: get_eval_model_on_DEVICE_STR("unext_emb_physics_config_C", "")) # lambda expression to instanciate a callable in a gr.State
model_b_placeholder = gr.State(lambda: get_baseline_model_on_DEVICE_STR("DPIR")) # lambda expression to instanciate a callable in a gr.State
dataset_placeholder = gr.State(lambda: get_dataset_on_DEVICE_STR("Natural"))
physics_placeholder = gr.State(lambda: get_physics_on_DEVICE_STR("MotionBlur_easy")) # lambda expression to instanciate a callable in a gr.State
metrics_placeholder = gr.State(get_list_metrics_on_DEVICE_STR(["PSNR"]))
@gr.render(inputs=[dataset_placeholder, physics_placeholder, metrics_placeholder])
def dynamic_layout(dataset, physics, metrics):
### LAYOUT
dataset_name = dataset.name
physics_name = physics.name
metric_names = [metric.name for metric in metrics]
# Components: Inputs/Outputs + Load EvalDataset/PhysicsWithGenerator/EvalModel/BaselineModel
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
clean = gr.Image(label=f"{dataset_name} IMAGE", interactive=True)
physics_params = gr.Textbox(label="Physics parameters", elem_classes=["fixed-textbox"], value=physics.display_saved_params())
with gr.Column():
y_image = gr.Image(label=f"{physics_name} IMAGE", interactive=False)
y_metrics = gr.Textbox(label="Metrics(y, x)", elem_classes=["fixed-textbox"],)
choose_physics = gr.Radio(choices=AVAILABLE_PHYSICS,
label="List of PhysicsWithGenerator",
value=physics_name)
with gr.Row():
key_selector = gr.Dropdown(choices=list(physics.saved_params["updatable_params"].keys()),
label="Updatable Parameter Key",
scale=2)
value_text = gr.Textbox(label="Update Value", scale=2)
update_button = gr.Button("Manually update parameter value", scale=1)
with gr.Column():
with gr.Row():
with gr.Column():
model_a_out = gr.Image(label="RAM OUTPUT", interactive=False)
out_a_metric = gr.Textbox(label="Metrics(RAM(y, physics), x)", elem_classes=["fixed-textbox"])
with gr.Column():
model_b_out = gr.Image(label="DPIR OUTPUT", interactive=False)
out_b_metric = gr.Textbox(label="Metrics(DPIR(y, physics), x)", elem_classes=["fixed-textbox"])
with gr.Row():
choose_dataset = gr.Radio(choices=EvalDataset.all_datasets,
label="List of EvalDataset",
value=dataset_name,
scale=2)
idx_slider = gr.Slider(minimum=0, maximum=len(dataset)-1, step=1, label="Sample index", scale=1)
# Components: Load Metric + Load image Buttons
with gr.Row():
with gr.Column(scale=3):
choose_metrics = gr.CheckboxGroup(choices=Metric.all_metrics,
value=metric_names,
label="Choose metrics you are interested")
use_generator_button = gr.Checkbox(label="Generate valid physics parameters", scale=1)
run_button = gr.Button("Run current image", scale=1)
with gr.Column(scale=1):
load_button = gr.Button("Load images from dataset...")
load_random_button = gr.Button("Load randomly from dataset...")
### Event listeners
choose_dataset.change(fn=get_dataset,
inputs=choose_dataset,
outputs=[dataset_placeholder, physics_placeholder, model_b_placeholder])
choose_physics.change(fn=get_physics_on_DEVICE_STR,
inputs=choose_physics,
outputs=[physics_placeholder])
update_button.click(fn=physics.update_and_display_params, inputs=[key_selector, value_text], outputs=physics_params)
choose_metrics.change(fn=get_list_metrics_on_DEVICE_STR,
inputs=choose_metrics,
outputs=metrics_placeholder)
run_button.click(fn=generate_imgs_from_user,
inputs=[clean,
model_a_placeholder,
model_b_placeholder,
physics_placeholder,
use_generator_button,
metrics_placeholder],
outputs=[clean, y_image, model_a_out, model_b_out, physics_params, y_metrics, out_a_metric, out_b_metric])
load_button.click(fn=generate_imgs_from_dataset,
inputs=[dataset_placeholder,
idx_slider,
model_a_placeholder,
model_b_placeholder,
physics_placeholder,
use_generator_button,
metrics_placeholder],
outputs=[clean, y_image, model_a_out, model_b_out, physics_params, y_metrics, out_a_metric, out_b_metric])
load_random_button.click(fn=generate_random_imgs_from_dataset,
inputs=[dataset_placeholder,
model_a_placeholder,
model_b_placeholder,
physics_placeholder,
use_generator_button,
metrics_placeholder],
outputs=[idx_slider, clean, y_image, model_a_out, model_b_out, physics_params, y_metrics, out_a_metric, out_b_metric])
interface.launch()
|