Spaces:
Runtime error
Runtime error
File size: 12,154 Bytes
1ba3df3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import pytorch_lightning as pl
import importlib
import PIL.Image as Image
import models
import datasets
from evaluator.ssim import SSIM, MSSSIM
import lpips
from models.loss import GANHingeLoss
from utils import set_logger, magic_image_handler
NUM_TEST_SAVE_IMAGE = 10
class FontLightningModule(pl.LightningModule):
def __init__(self, args):
super().__init__()
self.args = args
self.losses = {}
self.metrics = {}
self.networks = nn.ModuleDict(self.build_models())
self.module_keys = list(self.networks.keys())
self.losses = self.build_losses()
self.metrics = self.build_metrics()
self.opt_tag = {key: None for key in self.networks.keys()}
self.sched_tag = {key: None for key in self.networks.keys()}
self.sched_use = False
# self.automatic_optimization = False
self.train_d_content = True
self.train_d_style = True
def build_models(self):
networks = {}
for key, hp_model in self.args.models.items():
key_ = key.lower()
if 'g' == key_[0]:
model_ = models.Generator(hp_model)
elif 'd' == key_[0]:
model_ = models.PatchGANDiscriminator(hp_model) # TODO: add option for selecting discriminator
else:
raise ValueError(f"No key such as {key}")
networks[key.lower()] = model_
return networks
def build_losses(self):
losses_dict = {}
losses_dict['L1'] = torch.nn.L1Loss()
if 'd_content' in self.module_keys:
losses_dict['GANLoss_content'] = GANHingeLoss()
if 'd_style' in self.module_keys:
losses_dict['GANLoss_style'] = GANHingeLoss()
return losses_dict
def build_metrics(self):
metrics_dict = nn.ModuleDict()
metrics_dict['ssim'] = SSIM(val_range=1) # img value is in [0, 1]
metrics_dict['msssim'] = MSSSIM(weights=[0.45, 0.3, 0.25], val_range=1) # since imsize=64, len(weight)<=3
metrics_dict['lpips'] = lpips.LPIPS(net='vgg')
return metrics_dict
def configure_optimizers(self):
optims = {}
for key, args_model in self.args.models.items():
key = key.lower()
if args_model['optim'] is not None:
args_optim = args_model['optim']
module, cls = args_optim['class'].rsplit(".", 1)
O = getattr(importlib.import_module(module, package=None), cls)
o = O([p for p in self.networks[key].parameters() if p.requires_grad],
lr=args_optim.lr, betas=args_optim.betas)
optims[key] = o
optim_module_keys = optims.keys()
count = 0
optim_list = []
for _key in self.module_keys:
if _key in optim_module_keys:
optim_list.append(optims[_key])
self.opt_tag[_key] = count
count += 1
return optim_list
def forward(self, content_images, style_images):
return self.networks['g']((content_images, style_images))
def common_forward(self, batch, batch_idx):
loss = {}
logs = {}
content_images = batch['content_images']
style_images = batch['style_images']
gt_images = batch['gt_images']
image_paths = batch['image_paths']
char_idx = batch['char_idx']
generated_images = self(content_images, style_images)
# l1 loss
loss['g_L1'] = self.losses['L1'](generated_images, gt_images)
loss['g_backward'] = loss['g_L1'] * self.args.logging.lambda_L1
# loss for training generator
if 'd_content' in self.module_keys:
loss = self.d_content_loss_for_G(content_images, generated_images, loss)
if 'd_style' in self.networks.keys():
loss = self.d_style_loss_for_G(style_images, generated_images, loss)
# loss for training discriminator
generated_images = generated_images.detach()
if 'd_content' in self.module_keys:
if self.train_d_content:
loss = self.d_content_loss_for_D(content_images, generated_images, gt_images, loss)
if 'd_style' in self.module_keys:
if self.train_d_style:
loss = self.d_style_loss_for_D(style_images, generated_images, gt_images, loss)
logs['content_images'] = content_images
logs['style_images'] = style_images
logs['gt_images'] = gt_images
logs['generated_images'] = generated_images
return loss, logs
@property
def automatic_optimization(self):
return False
def training_step(self, batch, batch_idx):
metrics = {}
# forward
loss, logs = self.common_forward(batch, batch_idx)
if self.global_step % self.args.logging.freq['train'] == 0:
with torch.no_grad():
metrics.update(self.calc_metrics(logs['gt_images'], logs['generated_images']))
# backward
opts = self.optimizers()
opts[self.opt_tag['g']].zero_grad()
self.manual_backward(loss['g_backward'])
if 'd_content' in self.module_keys:
if self.train_d_content:
opts[self.opt_tag['d_content']].zero_grad()
self.manual_backward(loss['dcontent_backward'])
if 'd_style' in self.module_keys:
if self.train_d_style:
opts[self.opt_tag['d_style']].zero_grad()
self.manual_backward(loss['dstyle_backward'])
opts[self.opt_tag['g']].step()
if 'd_content' in self.module_keys:
if self.train_d_content:
opts[self.opt_tag['d_content']].step()
if 'd_style' in self.module_keys:
if self.train_d_style:
opts[self.opt_tag['d_style']].step()
if self.global_step % self.args.logging.freq['train'] == 0:
self.custom_log(loss, metrics, logs, mode='train')
def validation_step(self, batch, batch_idx):
metrics = {}
loss, logs = self.common_forward(batch, batch_idx)
self.custom_log(loss, metrics, logs, mode='eval')
def test_step(self, batch, batch_idx):
metrics = {}
loss, logs = self.common_forward(batch, batch_idx)
metrics.update(self.calc_metrics(logs['gt_images'], logs['generated_images']))
if batch_idx < NUM_TEST_SAVE_IMAGE:
for key, value in logs.items():
if 'image' in key:
sample_images = (magic_image_handler(value) * 255)[..., 0].astype(np.uint8)
Image.fromarray(sample_images).save(f"{batch_idx:02d}_{key}.png")
return loss, logs, metrics
def test_epoch_end(self, test_step_outputs):
# do something with the outputs of all test batches
# all_test_preds = test_step_outputs.metrics
ssim_list = []
msssim_list = []
for _, test_output in enumerate(test_step_outputs):
ssim_list.append(test_output[2]['SSIM'].cpu().numpy())
msssim_list.append(test_output[2]['MSSSIM'].cpu().numpy())
print(f"SSIM: {np.mean(ssim_list)}")
print(f"MSSSIM: {np.mean(msssim_list)}")
def common_dataloader(self, mode='train', batch_size=None):
dataset_cls = getattr(datasets, self.args.datasets.type)
dataset_config = getattr(self.args.datasets, mode)
dataset = dataset_cls(dataset_config, mode=mode)
_batch_size = batch_size if batch_size is not None else dataset_config.batch_size
dataloader = DataLoader(dataset,
shuffle=dataset_config.shuffle,
batch_size=_batch_size,
num_workers=dataset_config.num_workers,
drop_last=True)
return dataloader
def train_dataloader(self):
return self.common_dataloader(mode='train')
def val_dataloader(self):
return self.common_dataloader(mode='eval')
def test_dataloader(self):
return self.common_dataloader(mode='eval')
def calc_metrics(self, gt_images, generated_images):
"""
:param gt_images:
:param generated_images:
:return:
"""
metrics = {}
_gt = torch.clamp(gt_images.clone(), 0, 1)
_gen = torch.clamp(generated_images.clone(), 0, 1)
metrics['SSIM'] = self.metrics['ssim'](_gt, _gen)
msssim_value = self.metrics['msssim'](_gt, _gen)
metrics['MSSSIM'] = msssim_value if not torch.isnan(msssim_value) else torch.tensor(0.).type_as(_gt)
metrics['LPIPS'] = self.metrics['lpips'](_gt * 2 - 1, _gen * 2 - 1).squeeze().mean()
return metrics
# region step
def d_content_loss_for_G(self, content_images, generated_images, loss):
pred_generated = self.networks['d_content'](torch.cat([content_images, generated_images], dim=1))
loss['g_gan_content'] = self.losses['GANLoss_content'](pred_generated, True, for_discriminator=False)
loss['g_backward'] += loss['g_gan_content']
return loss
def d_content_loss_for_D(self, content_images, generated_images, gt_images, loss):
# D
if 'd_content' in self.module_keys:
if self.train_d_content:
pred_gt_images = self.networks['d_content'](torch.cat([content_images, gt_images], dim=1))
pred_generated_images = self.networks['d_content'](torch.cat([content_images, generated_images], dim=1))
loss['dcontent_gt'] = self.losses['GANLoss_content'](pred_gt_images, True, for_discriminator=True)
loss['dcontent_gen'] = self.losses['GANLoss_content'](pred_generated_images, False, for_discriminator=True)
loss['dcontent_backward'] = (loss['dcontent_gt'] + loss['dcontent_gen'])
return loss
def d_style_loss_for_G(self, style_images, generated_images, loss):
pred_generated = self.networks['d_style'](torch.cat([style_images, generated_images], dim=1))
loss['g_gan_style'] = self.losses['GANLoss_style'](pred_generated, True, for_discriminator=False)
assert self.train_d_style
loss['g_backward'] += loss['g_gan_style']
return loss
def d_style_loss_for_D(self, style_images, generated_images, gt_images, loss):
pred_gt_images = self.networks['d_style'](torch.cat([style_images, gt_images], dim=1))
pred_generated_images = self.networks['d_style'](torch.cat([style_images, generated_images], dim=1))
loss['dstyle_gt'] = self.losses['GANLoss_style'](pred_gt_images, True, for_discriminator=True)
loss['dstyle_gen'] = self.losses['GANLoss_style'](pred_generated_images, False, for_discriminator=True)
loss['dstyle_backward'] = (loss['dstyle_gt'] + loss['dstyle_gen'])
return loss
def custom_log(self, loss, metrics, logs, mode):
# logging values with tensorboard
for loss_full_key, value in loss.items():
model_type, loss_type = loss_full_key.split('_')[0], "_".join(loss_full_key.split('_')[1:])
self.log(f'{model_type}/{mode}_{loss_type}', value)
for metric_full_key, value in metrics.items():
model_type, metric_type = metric_full_key.split('_')[0], "_".join(metric_full_key.split('_')[1:])
self.log(f'{model_type}/{mode}_{metric_type}', value)
# logging images, params, etc.
tensorboard = self.logger.experiment
for key, value in logs.items():
if 'image' in key:
sample_images = magic_image_handler(value)
tensorboard.add_image(f"{mode}/" + key, sample_images, self.global_step, dataformats='HWC')
elif 'param' in key:
tensorboard.add_histogram(f"{mode}" + key, value, self.global_step)
else:
raise RuntimeError(f"Only logging with one of keywords: image, param | current input: {key}")
|