File size: 16,990 Bytes
79cf446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15710ee
79cf446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15710ee
79cf446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

# -*- coding:utf-8 -*-

import base64
from io import BytesIO
import spaces
import gradio as gr
import torch
from app_modules.gradio_utils import (
    cancel_outputing,
    delete_last_conversation,
    reset_state,
    reset_textbox,
    transfer_input,
    wrap_gen_fn,
)
from app_modules.overwrites import reload_javascript
from app_modules.presets import CONCURRENT_COUNT, description, description_top, title
from app_modules.utils import configure_logger, is_variable_assigned, strip_stop_words

from inference import (
    convert_conversation_to_prompts,
    deepseek_generate,
    load_model,
)
from app_modules.conversation import SeparatorStyle


def load_models():
    models = {
        "DeepSeek-VL 7B": "deepseek-ai/deepseek-vl-7b-chat",
    }

    for model_name in models:
        models[model_name] = load_model(models[model_name])

    return models


logger = configure_logger()
models = load_models()
MODELS = sorted(list(models.keys()))


def generate_prompt_with_history(
    text, image, history, vl_chat_processor, tokenizer, max_length=2048
):
    """
    Generate a prompt with history for the deepseek application.

    Args:
        text (str): The text prompt.
        image (str): The image prompt.
        history (list): List of previous conversation messages.
        tokenizer: The tokenizer used for encoding the prompt.
        max_length (int): The maximum length of the prompt.

    Returns:
        tuple: A tuple containing the generated prompt, image list, conversation, and conversation copy. If the prompt could not be generated within the max_length limit, returns None.
    """

    sft_format = "deepseek"
    user_role_ind = 0
    bot_role_ind = 1

    # Initialize conversation
    conversation = vl_chat_processor.new_chat_template()

    if history:
        conversation.messages = history

    if image is not None:
        if "<image_placeholder>" not in text:
            text = (
                "<image_placeholder>" + "\n" + text
            )  # append the <image_placeholder> in a new line after the text prompt
        text = (text, image)

    conversation.append_message(conversation.roles[user_role_ind], text)
    conversation.append_message(conversation.roles[bot_role_ind], "")

    # Create a copy of the conversation to avoid history truncation in the UI
    conversation_copy = conversation.copy()
    logger.info("=" * 80)
    logger.info(get_prompt(conversation))

    rounds = len(conversation.messages) // 2

    for _ in range(rounds):
        current_prompt = get_prompt(conversation)
        current_prompt = (
            current_prompt.replace("</s>", "")
            if sft_format == "deepseek"
            else current_prompt
        )

        if torch.tensor(tokenizer.encode(current_prompt)).size(-1) <= max_length:
            return conversation_copy

        if len(conversation.messages) % 2 != 0:
            gr.Error("The messages between user and assistant are not paired.")
            return

        try:
            for _ in range(2):  # pop out two messages in a row
                conversation.messages.pop(0)
        except IndexError:
            gr.Error("Input text processing failed, unable to respond in this round.")
            return None

    gr.Error("Prompt could not be generated within max_length limit.")
    return None


def to_gradio_chatbot(conv):
    """Convert the conversation to gradio chatbot format."""
    ret = []
    for i, (role, msg) in enumerate(conv.messages[conv.offset :]):
        if i % 2 == 0:
            if type(msg) is tuple:
                msg, image = msg
                if isinstance(image, str):
                    with open(image, "rb") as f:
                        data = f.read()
                    img_b64_str = base64.b64encode(data).decode()
                    image_str = f'<video src="data:video/mp4;base64,{img_b64_str}" controls width="426" height="240"></video>'
                    msg = msg.replace("\n".join(["<image_placeholder>"] * 4), image_str)
                else:
                    max_hw, min_hw = max(image.size), min(image.size)
                    aspect_ratio = max_hw / min_hw
                    max_len, min_len = 800, 400
                    shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
                    longest_edge = int(shortest_edge * aspect_ratio)
                    W, H = image.size
                    if H > W:
                        H, W = longest_edge, shortest_edge
                    else:
                        H, W = shortest_edge, longest_edge
                    image = image.resize((W, H))
                    buffered = BytesIO()
                    image.save(buffered, format="JPEG")
                    img_b64_str = base64.b64encode(buffered.getvalue()).decode()
                    img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
                    msg = msg.replace("<image_placeholder>", img_str)
            ret.append([msg, None])
        else:
            ret[-1][-1] = msg
    return ret


def to_gradio_history(conv):
    """Convert the conversation to gradio history state."""
    return conv.messages[conv.offset :]


def get_prompt(conv) -> str:
    """Get the prompt for generation."""
    system_prompt = conv.system_template.format(system_message=conv.system_message)
    if conv.sep_style == SeparatorStyle.DeepSeek:
        seps = [conv.sep, conv.sep2]
        if system_prompt == "" or system_prompt is None:
            ret = ""
        else:
            ret = system_prompt + seps[0]
        for i, (role, message) in enumerate(conv.messages):
            if message:
                if type(message) is tuple:  # multimodal message
                    message, _ = message
                ret += role + ": " + message + seps[i % 2]
            else:
                ret += role + ":"
        return ret
    else:
        return conv.get_prompt

@spaces.GPU
@wrap_gen_fn
def predict(
    text,
    image,
    chatbot,
    history,
    top_p,
    temperature,
    repetition_penalty,
    max_length_tokens,
    max_context_length_tokens,
    model_select_dropdown,
):
    """
    Function to predict the response based on the user's input and selected model.

    Parameters:
    user_text (str): The input text from the user.
    user_image (str): The input image from the user.
    chatbot (str): The chatbot's name.
    history (str): The history of the chat.
    top_p (float): The top-p parameter for the model.
    temperature (float): The temperature parameter for the model.
    max_length_tokens (int): The maximum length of tokens for the model.
    max_context_length_tokens (int): The maximum length of context tokens for the model.
    model_select_dropdown (str): The selected model from the dropdown.

    Returns:
    generator: A generator that yields the chatbot outputs, history, and status.
    """
    print("running the prediction function")
    try:
        tokenizer, vl_gpt, vl_chat_processor = models[model_select_dropdown]

        if text == "":
            yield chatbot, history, "Empty context."
            return
    except KeyError:
        yield [[text, "No Model Found"]], [], "No Model Found"
        return

    conversation = generate_prompt_with_history(
        text,
        image,
        history,
        vl_chat_processor,
        tokenizer,
        max_length=max_context_length_tokens,
    )
    prompts = convert_conversation_to_prompts(conversation)

    stop_words = conversation.stop_str
    gradio_chatbot_output = to_gradio_chatbot(conversation)

    full_response = ""
    with torch.no_grad():
        for x in deepseek_generate(
            prompts=prompts,
            vl_gpt=vl_gpt,
            vl_chat_processor=vl_chat_processor,
            tokenizer=tokenizer,
            stop_words=stop_words,
            max_length=max_length_tokens,
            temperature=temperature,
            repetition_penalty=repetition_penalty,
            top_p=top_p,
        ):
            full_response += x
            response = strip_stop_words(full_response, stop_words)
            conversation.update_last_message(response)
            gradio_chatbot_output[-1][1] = response
            yield gradio_chatbot_output, to_gradio_history(
                conversation
            ), "Generating..."

    print("flushed result to gradio")
    torch.cuda.empty_cache()

    if is_variable_assigned("x"):
        print(f"{model_select_dropdown}:\n{text}\n{'-' * 80}\n{x}\n{'=' * 80}")
        print(
            f"temperature: {temperature}, top_p: {top_p}, repetition_penalty: {repetition_penalty}, max_length_tokens: {max_length_tokens}"
        )

    yield gradio_chatbot_output, to_gradio_history(conversation), "Generate: Success"


def retry(
    text,
    image,
    chatbot,
    history,
    top_p,
    temperature,
    repetition_penalty,
    max_length_tokens,
    max_context_length_tokens,
    model_select_dropdown,
):
    if len(history) == 0:
        yield (chatbot, history, "Empty context")
        return

    chatbot.pop()
    history.pop()
    text = history.pop()[-1]
    if type(text) is tuple:
        text, image = text

    yield from predict(
        text,
        image,
        chatbot,
        history,
        top_p,
        temperature,
        repetition_penalty,
        max_length_tokens,
        max_context_length_tokens,
        model_select_dropdown,
    )


def build_demo(MODELS):
    with open("assets/custom.css", "r", encoding="utf-8") as f:
        customCSS = f.read()

    with gr.Blocks(theme=gr.themes.Soft(spacing_size="md")) as demo:
        history = gr.State([])
        input_text = gr.State()
        input_image = gr.State()

        with gr.Row():
            gr.HTML(title)
            status_display = gr.Markdown("Success", elem_id="status_display")
        gr.Markdown(description_top)

        with gr.Row(equal_height=True):
            with gr.Column(scale=4):
                with gr.Row():
                    chatbot = gr.Chatbot(
                        elem_id="deepseek_chatbot",
                        show_share_button=True,
                        likeable=True,
                        bubble_full_width=False,
                        height=600,
                    )
                with gr.Row():
                    with gr.Column(scale=4):
                        text_box = gr.Textbox(
                            show_label=False, placeholder="Enter text", container=False
                        )
                    with gr.Column(
                        min_width=70,
                    ):
                        submitBtn = gr.Button("Send")
                    with gr.Column(
                        min_width=70,
                    ):
                        cancelBtn = gr.Button("Stop")
                with gr.Row():
                    emptyBtn = gr.Button(
                        "🧹 New Conversation",
                    )
                    retryBtn = gr.Button("🔄 Regenerate")
                    delLastBtn = gr.Button("🗑️ Remove Last Turn")

            with gr.Column():
                image_box = gr.Image(type="pil")

                with gr.Tab(label="Parameter Setting") as parameter_row:
                    top_p = gr.Slider(
                        minimum=-0,
                        maximum=1.0,
                        value=0.95,
                        step=0.05,
                        interactive=True,
                        label="Top-p",
                    )
                    temperature = gr.Slider(
                        minimum=0,
                        maximum=1.0,
                        value=0.1,
                        step=0.1,
                        interactive=True,
                        label="Temperature",
                    )
                    repetition_penalty = gr.Slider(
                        minimum=0.0,
                        maximum=2.0,
                        value=1.1,
                        step=0.1,
                        interactive=True,
                        label="Repetition penalty",
                    )
                    max_length_tokens = gr.Slider(
                        minimum=0,
                        maximum=4096,
                        value=2048,
                        step=8,
                        interactive=True,
                        label="Max Generation Tokens",
                    )
                    max_context_length_tokens = gr.Slider(
                        minimum=0,
                        maximum=4096,
                        value=4096,
                        step=128,
                        interactive=True,
                        label="Max History Tokens",
                    )
                    model_select_dropdown = gr.Dropdown(
                        label="Select Models",
                        choices=MODELS,
                        multiselect=False,
                        value=MODELS[0],
                        interactive=True,
                    )

        examples_list = [
            [
                "examples/rap.jpeg",
                "Can you write me a master rap song that rhymes very well based on this image?",
            ],
            [
                "examples/app.png",
                "What is this app about?",
            ],
            [
                "examples/pipeline.png",
                "Help me write a python code based on the image.",
            ],
            [
                "examples/chart.png",
                "Could you help me to re-draw this picture with python codes?",
            ],
            [
                "examples/mirror.png",
                "How many people are there in the image. Why?",
            ],
            [
                "examples/puzzle.png",
                "Can this 2 pieces combine together?",
            ],
        ]
        gr.Examples(examples=examples_list, inputs=[image_box, text_box])
        gr.Markdown(description)

        input_widgets = [
            input_text,
            input_image,
            chatbot,
            history,
            top_p,
            temperature,
            repetition_penalty,
            max_length_tokens,
            max_context_length_tokens,
            model_select_dropdown,
        ]
        output_widgets = [chatbot, history, status_display]

        transfer_input_args = dict(
            fn=transfer_input,
            inputs=[text_box, image_box],
            outputs=[input_text, input_image, text_box, image_box, submitBtn],
            show_progress=True,
        )

        predict_args = dict(
            fn=predict,
            inputs=input_widgets,
            outputs=output_widgets,
            show_progress=True,
        )

        retry_args = dict(
            fn=retry,
            inputs=input_widgets,
            outputs=output_widgets,
            show_progress=True,
        )

        reset_args = dict(
            fn=reset_textbox, inputs=[], outputs=[text_box, status_display]
        )

        predict_events = [
            text_box.submit(**transfer_input_args).then(**predict_args),
            submitBtn.click(**transfer_input_args).then(**predict_args),
        ]

        emptyBtn.click(reset_state, outputs=output_widgets, show_progress=True)
        emptyBtn.click(**reset_args)
        retryBtn.click(**retry_args)

        delLastBtn.click(
            delete_last_conversation,
            [chatbot, history],
            output_widgets,
            show_progress=True,
        )

        cancelBtn.click(cancel_outputing, [], [status_display], cancels=predict_events)

    return demo


if __name__ == "__main__":
    demo = build_demo(MODELS)
    demo.title = "DeepSeek-VL Chatbot"

    reload_javascript()
    demo.queue(max_size=20).launch(
        share=False,
        favicon_path="assets/favicon.ico",
    )