File size: 2,761 Bytes
79cf446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

import json
from typing import Dict, List

import PIL.Image
import torch
from transformers import AutoModelForCausalLM

from deepseek_vl.models import MultiModalityCausalLM, VLChatProcessor


def load_pretrained_model(model_path: str):
    vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
    tokenizer = vl_chat_processor.tokenizer

    vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
        model_path, trust_remote_code=True
    )
    vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()

    return tokenizer, vl_chat_processor, vl_gpt


def load_pil_images(conversations: List[Dict[str, str]]) -> List[PIL.Image.Image]:
    """

    Args:
        conversations (List[Dict[str, str]]): the conversations with a list of messages. An example is :
            [
                {
                    "role": "User",
                    "content": "<image_placeholder>\nExtract all information from this image and convert them into markdown format.",
                    "images": ["./examples/table_datasets.png"]
                },
                {"role": "Assistant", "content": ""},
            ]

    Returns:
        pil_images (List[PIL.Image.Image]): the list of PIL images.

    """

    pil_images = []

    for message in conversations:
        if "images" not in message:
            continue

        for image_path in message["images"]:
            pil_img = PIL.Image.open(image_path)
            pil_img = pil_img.convert("RGB")
            pil_images.append(pil_img)

    return pil_images


def load_json(filepath):
    with open(filepath, "r") as f:
        data = json.load(f)
        return data