File size: 2,986 Bytes
94aee35 892aae2 94aee35 892aae2 94aee35 892aae2 94aee35 892aae2 94aee35 892aae2 94aee35 892aae2 94aee35 892aae2 94aee35 892aae2 94aee35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import streamlit as st
from haystack import Pipeline
from haystack.document_stores import FAISSDocumentStore
from haystack.nodes import Shaper, PromptNode, PromptTemplate, PromptModel, EmbeddingRetriever
from haystack.nodes.retriever.web import WebRetriever
@st.cache_resource(show_spinner=False)
def get_plain_pipeline():
prompt_open_ai = PromptModel(model_name_or_path="text-davinci-003", api_key=st.secrets["OPENAI_API_KEY"])
# Now let make one PromptNode use the default model and the other one the OpenAI model:
plain_llm_template = PromptTemplate(name="plain_llm", prompt_text="Answer the following question: {query}")
node_openai = PromptNode(prompt_open_ai, default_prompt_template=plain_llm_template, max_length=300)
pipeline = Pipeline()
pipeline.add_node(component=node_openai, name="prompt_node", inputs=["Query"])
return pipeline
@st.cache_resource(show_spinner=False)
def get_retrieval_augmented_pipeline():
ds = FAISSDocumentStore(faiss_index_path="data/my_faiss_index.faiss",
faiss_config_path="data/my_faiss_index.json")
retriever = EmbeddingRetriever(
document_store=ds,
embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
model_format="sentence_transformers",
top_k=2
)
default_template = PromptTemplate(
name="question-answering",
prompt_text="Given the context please answer the question. Context: {join(documents)}; Question: "
"{query}; Answer:",
)
print(default_template.prompt_text)
# Let's initiate the PromptNode
node = PromptNode("text-davinci-003", default_prompt_template=default_template,
api_key=st.secrets["OPENAI_API_KEY"], max_length=500)
# Let's create a simple retrieval augmented pipeline with the retriever + PromptNode
pipeline = Pipeline()
pipeline.add_node(component=retriever, name='retriever', inputs=['Query'])
pipeline.add_node(component=node, name="prompt_node", inputs=["retriever"])
return pipeline
@st.cache_resource(show_spinner=False)
def get_web_retrieval_augmented_pipeline():
search_key = st.secrets["WEBRET_API_KEY"]
web_retriever = WebRetriever(api_key=search_key, search_engine_provider="SerperDev")
default_template = PromptTemplate(
name="question-answering",
prompt_text="Given the context please answer the question. Context: {join(documents)}; Question: "
"{query}; Answer:",
)
# Let's initiate the PromptNode
node = PromptNode("text-davinci-003", default_prompt_template=default_template,
api_key=st.secrets["OPENAI_API_KEY"], max_length=500)
# Let's create a pipeline with the webretriever + PromptNode
pipeline = Pipeline()
pipeline.add_node(component=web_retriever, name='retriever', inputs=['Query'])
pipeline.add_node(component=node, name="prompt_node", inputs=["retriever"])
return pipeline
|