File size: 9,286 Bytes
360d784 0490fa6 360d784 0490fa6 2ea99b7 0490fa6 6a3fde1 360d784 2ea99b7 4556150 360d784 4556150 360d784 2ea99b7 4556150 2ea99b7 0a13671 360d784 2ea99b7 4556150 0490fa6 360d784 4556150 0a13671 4556150 0490fa6 4556150 0490fa6 4556150 6a3fde1 4556150 6a3fde1 2ea99b7 6a3fde1 4556150 0490fa6 6a3fde1 0490fa6 360d784 4556150 360d784 4556150 360d784 0490fa6 0d5e9a2 360d784 0490fa6 360d784 4556150 360d784 0490fa6 0d5e9a2 0490fa6 360d784 0d5e9a2 360d784 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
from __future__ import annotations
import asyncio
import contextlib
import pathlib
import shutil
import traceback
import uuid
from collections import deque
from functools import partial
from json import JSONDecodeError
from typing import Dict
import fire
import openai
import tenacity
import uvicorn
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse, JSONResponse
from fastapi.staticfiles import StaticFiles
from loguru import logger
from metagpt.config import CONFIG
from metagpt.logs import set_llm_stream_logfunc
from metagpt.schema import Message
from openai import OpenAI
from data_model import (
NewMsg,
MessageJsonModel,
Sentences,
Sentence,
SentenceType,
SentenceValue,
ThinkActPrompt,
LLMAPIkeyTest,
ThinkActStep,
)
from message_enum import QueryAnswerType, MessageStatus
from software_company import RoleRun, SoftwareCompany
class Service:
@classmethod
async def create_message(cls, req_model: NewMsg, request: Request):
"""
Session message stream
"""
tc_id = 0
task = None
try:
exclude_keys = CONFIG.get("SERVER_METAGPT_CONFIG_EXCLUDE", [])
config = {k.upper(): v for k, v in req_model.config.items() if k not in exclude_keys}
cls._set_context(config)
msg_queue = deque()
CONFIG.LLM_STREAM_LOG = lambda x: msg_queue.appendleft(x) if x else None
role = SoftwareCompany()
role.recv(message=Message(content=req_model.query))
answer = MessageJsonModel(
steps=[
Sentences(
contents=[
Sentence(
type=SentenceType.TEXT.value, value=SentenceValue(answer=req_model.query), is_finished=True
)
],
status=MessageStatus.COMPLETE.value,
)
],
qa_type=QueryAnswerType.Answer.value,
)
async def stop_if_disconnect():
while not await request.is_disconnected():
await asyncio.sleep(1)
if task is None:
return
if not task.done():
task.cancel()
logger.info(f"cancel task {task}")
asyncio.create_task(stop_if_disconnect())
while True:
tc_id += 1
if await request.is_disconnected():
return
think_result: RoleRun = await role.think()
if not think_result: # End of conversion
break
think_act_prompt = ThinkActPrompt(role=think_result.role.profile)
think_act_prompt.update_think(tc_id, think_result)
yield think_act_prompt.prompt + "\n\n"
task = asyncio.create_task(role.act())
while not await request.is_disconnected():
if msg_queue:
think_act_prompt.update_act(msg_queue.pop(), False)
yield think_act_prompt.prompt + "\n\n"
continue
if task.done():
break
await asyncio.sleep(0.5)
else:
task.cancel()
return
act_result = await task
think_act_prompt.update_act(act_result)
yield think_act_prompt.prompt + "\n\n"
answer.add_think_act(think_act_prompt)
yield answer.prompt + "\n\n" # Notify the front-end that the message is complete.
except asyncio.CancelledError:
task.cancel()
except tenacity.RetryError as retry_error:
yield cls.handle_retry_error(tc_id, retry_error)
except Exception as ex:
description = str(ex)
answer = traceback.format_exc()
think_act_prompt = cls.create_error_think_act_prompt(tc_id, description, description, answer)
yield think_act_prompt.prompt + "\n\n"
finally:
CONFIG.WORKSPACE_PATH: pathlib.Path
if CONFIG.WORKSPACE_PATH.exists():
shutil.rmtree(CONFIG.WORKSPACE_PATH)
@staticmethod
def create_error_think_act_prompt(tc_id: int, title, description: str, answer: str) -> ThinkActPrompt:
step = ThinkActStep(
id=tc_id,
status="failed",
title=title,
description=description,
content=Sentence(type=SentenceType.ERROR.value, id=1, value=SentenceValue(answer=answer), is_finished=True),
)
return ThinkActPrompt(step=step)
@classmethod
def handle_retry_error(cls, tc_id: int, error: tenacity.RetryError):
# Known exception handling logic
try:
# Try to get the original exception
original_exception = error.last_attempt.exception()
while isinstance(original_exception, tenacity.RetryError):
original_exception = original_exception.last_attempt.exception()
if isinstance(original_exception, openai.AuthenticationError):
answer = original_exception.message
title = "OpenAI AuthenticationError"
think_act_prompt = cls.create_error_think_act_prompt(tc_id, title, title, answer)
return think_act_prompt.prompt + "\n\n"
elif isinstance(original_exception, openai.APITimeoutError):
answer = original_exception.message
title = "OpenAI APITimeoutError"
think_act_prompt = cls.create_error_think_act_prompt(tc_id, title, title, answer)
return think_act_prompt.prompt + "\n\n"
elif isinstance(original_exception, JSONDecodeError):
answer = str(original_exception)
title = "MetaGPT Error"
description = "LLM return result parsing error"
think_act_prompt = cls.create_error_think_act_prompt(tc_id, title, description, answer)
return think_act_prompt.prompt + "\n\n"
else:
return cls.handle_unexpected_error(tc_id, error)
except Exception:
return cls.handle_unexpected_error(tc_id, error)
@classmethod
def handle_unexpected_error(cls, tc_id, error):
description = str(error)
answer = traceback.format_exc()
think_act_prompt = cls.create_error_think_act_prompt(tc_id, description, description, answer)
return think_act_prompt.prompt + "\n\n"
@staticmethod
def _set_context(context: Dict) -> Dict:
uid = uuid.uuid4().hex
context["WORKSPACE_PATH"] = pathlib.Path("workspace", uid)
for old, new in (("DEPLOYMENT_ID", "DEPLOYMENT_NAME"), ("OPENAI_API_BASE", "OPENAI_BASE_URL")):
if old in context and new not in context:
context[new] = context[old]
CONFIG.set_context(context)
return context
default_llm_stream_log = partial(print, end="")
def llm_stream_log(msg):
with contextlib.suppress():
CONFIG._get("LLM_STREAM_LOG", default_llm_stream_log)(msg)
class ChatHandler:
@staticmethod
async def create_message(req_model: NewMsg, request: Request):
"""Message stream, using SSE."""
event = Service.create_message(req_model, request)
headers = {"Cache-Control": "no-cache", "Connection": "keep-alive"}
return StreamingResponse(event, headers=headers, media_type="text/event-stream")
class LLMAPIHandler:
@staticmethod
async def check_openai_key(req_model: LLMAPIkeyTest):
try:
# Listing all available models.
client = OpenAI(api_key=req_model.api_key)
response = client.models.list()
model_set = {model.id for model in response.data}
if req_model.llm_type in model_set:
logger.info("API Key is valid.")
return JSONResponse({"valid": True})
else:
logger.info("API Key is invalid.")
return JSONResponse({"valid": False, "message": "Model not found"})
except Exception as e:
# If the request fails, return False
logger.info(f"Error: {e}")
return JSONResponse({"valid": False, "message": str(e)})
app = FastAPI()
app.mount(
"/storage",
StaticFiles(directory="./storage/"),
name="storage",
)
app.add_api_route(
"/api/messages",
endpoint=ChatHandler.create_message,
methods=["post"],
summary="Session message sending (streaming response)",
)
app.add_api_route(
"/api/test-api-key",
endpoint=LLMAPIHandler.check_openai_key,
methods=["post"],
summary="LLM APIkey detection",
)
app.mount(
"/",
StaticFiles(directory="./static/", html=True, follow_symlink=True),
name="static",
)
set_llm_stream_logfunc(llm_stream_log)
def main():
server_config = CONFIG.get("SERVER_UVICORN", {})
uvicorn.run(app="__main__:app", **server_config)
if __name__ == "__main__":
fire.Fire(main)
|