shenchucheng
download html source from remote
0d5e9a2
raw
history blame
8.67 kB
#!/usr/bin/python3
# -*- coding: utf-8 -*-
from __future__ import annotations
import asyncio
import contextlib
import pathlib
import shutil
import traceback
import uuid
from collections import deque
from datetime import datetime
from enum import Enum
from functools import partial
from typing import Any, Optional
import fire
import uvicorn
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse
from fastapi.staticfiles import StaticFiles
from loguru import logger
from metagpt.actions.action import Action
from metagpt.actions.action_output import ActionOutput
from metagpt.config import CONFIG
from metagpt.logs import set_llm_stream_logfunc
from metagpt.schema import Message
from pydantic import BaseModel, Field
from software_company import RoleRun, SoftwareCompany
class QueryAnswerType(Enum):
Query = "Q"
Answer = "A"
class SentenceType(Enum):
TEXT = "text"
HIHT = "hint"
ACTION = "action"
ERROR = "error"
class MessageStatus(Enum):
COMPLETE = "complete"
class SentenceValue(BaseModel):
answer: str
class Sentence(BaseModel):
type: str
id: Optional[str] = None
value: SentenceValue
is_finished: Optional[bool] = None
class Sentences(BaseModel):
id: Optional[str] = None
action: Optional[str] = None
role: Optional[str] = None
skill: Optional[str] = None
description: Optional[str] = None
timestamp: str = Field(default_factory=lambda: datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f%z"))
status: str
contents: list[dict]
class NewMsg(BaseModel):
"""Chat with MetaGPT"""
query: str = Field(description="Problem description")
config: dict[str, Any] = Field(description="Configuration information")
class ErrorInfo(BaseModel):
error: str = None
traceback: str = None
class ThinkActStep(BaseModel):
id: str
status: str
title: str
timestamp: str = Field(default_factory=lambda: datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f%z"))
description: str
content: Sentence = None
class ThinkActPrompt(BaseModel):
message_id: int = None
timestamp: str = Field(default_factory=lambda: datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f%z"))
step: ThinkActStep = None
skill: Optional[str] = None
role: Optional[str] = None
def update_think(self, tc_id, action: Action):
self.step = ThinkActStep(
id=str(tc_id),
status="running",
title=action.desc,
description=action.desc,
)
def update_act(self, message: ActionOutput | str, is_finished: bool = True):
if is_finished:
self.step.status = "finish"
self.step.content = Sentence(
type=SentenceType.TEXT.value,
id=str(1),
value=SentenceValue(answer=message.content if is_finished else message),
is_finished=is_finished,
)
@staticmethod
def guid32():
return str(uuid.uuid4()).replace("-", "")[0:32]
@property
def prompt(self):
return self.json(exclude_unset=True)
class MessageJsonModel(BaseModel):
steps: list[Sentences]
qa_type: str
created_at: datetime = Field(default_factory=datetime.now)
query_time: datetime = Field(default_factory=datetime.now)
answer_time: datetime = Field(default_factory=datetime.now)
score: Optional[int] = None
feedback: Optional[str] = None
def add_think_act(self, think_act_prompt: ThinkActPrompt):
s = Sentences(
action=think_act_prompt.step.title,
skill=think_act_prompt.skill,
description=think_act_prompt.step.description,
timestamp=think_act_prompt.timestamp,
status=think_act_prompt.step.status,
contents=[think_act_prompt.step.content.dict()],
)
self.steps.append(s)
@property
def prompt(self):
return self.json(exclude_unset=True)
async def create_message(req_model: NewMsg, request: Request):
"""
Session message stream
"""
tc_id = 0
try:
exclude_keys = CONFIG.get("SERVER_METAGPT_CONFIG_EXCLUDE", [])
config = {k.upper(): v for k, v in req_model.config.items() if k not in exclude_keys}
set_context(config, uuid.uuid4().hex)
msg_queue = deque()
CONFIG.LLM_STREAM_LOG = lambda x: msg_queue.appendleft(x) if x else None
role = SoftwareCompany()
role.recv(message=Message(content=req_model.query))
answer = MessageJsonModel(
steps=[
Sentences(
contents=[
Sentence(
type=SentenceType.TEXT.value, value=SentenceValue(answer=req_model.query), is_finished=True
)
],
status=MessageStatus.COMPLETE.value,
)
],
qa_type=QueryAnswerType.Answer.value,
)
task = None
async def stop_if_disconnect():
while not await request.is_disconnected():
await asyncio.sleep(1)
if task is None:
return
if not task.done():
task.cancel()
logger.info(f"cancel task {task}")
asyncio.create_task(stop_if_disconnect())
while True:
tc_id += 1
if await request.is_disconnected():
return
think_result: RoleRun = await role.think()
if not think_result: # End of conversion
break
think_act_prompt = ThinkActPrompt(role=think_result.role.profile)
think_act_prompt.update_think(tc_id, think_result)
yield think_act_prompt.prompt + "\n\n"
task = asyncio.create_task(role.act())
while not await request.is_disconnected():
if msg_queue:
think_act_prompt.update_act(msg_queue.pop(), False)
yield think_act_prompt.prompt + "\n\n"
continue
if task.done():
break
await asyncio.sleep(0.5)
else:
task.cancel()
return
act_result = await task
think_act_prompt.update_act(act_result)
yield think_act_prompt.prompt + "\n\n"
answer.add_think_act(think_act_prompt)
yield answer.prompt + "\n\n" # Notify the front-end that the message is complete.
except asyncio.CancelledError:
task.cancel()
except Exception as ex:
description = str(ex)
answer = traceback.format_exc()
step = ThinkActStep(
id=tc_id,
status="failed",
title=description,
description=description,
content=Sentence(type=SentenceType.ERROR.value, id=1, value=SentenceValue(answer=answer), is_finished=True),
)
think_act_prompt = ThinkActPrompt(step=step)
yield think_act_prompt.prompt + "\n\n"
finally:
CONFIG.WORKSPACE_PATH: pathlib.Path
if CONFIG.WORKSPACE_PATH.exists():
shutil.rmtree(CONFIG.WORKSPACE_PATH)
default_llm_stream_log = partial(print, end="")
def llm_stream_log(msg):
with contextlib.suppress():
CONFIG._get("LLM_STREAM_LOG", default_llm_stream_log)(msg)
def set_context(context, uid):
context["WORKSPACE_PATH"] = pathlib.Path("workspace", uid)
for old, new in (("DEPLOYMENT_ID", "DEPLOYMENT_NAME"), ("OPENAI_API_BASE", "OPENAI_BASE_URL")):
if old in context and new not in context:
context[new] = context[old]
CONFIG.set_context(context)
return context
class ChatHandler:
@staticmethod
async def create_message(req_model: NewMsg, request: Request):
"""Message stream, using SSE."""
event = create_message(req_model, request)
headers = {"Cache-Control": "no-cache", "Connection": "keep-alive"}
return StreamingResponse(event, headers=headers, media_type="text/event-stream")
app = FastAPI()
app.mount(
"/storage",
StaticFiles(directory="./storage/"),
name="storage",
)
app.add_api_route(
"/api/messages",
endpoint=ChatHandler.create_message,
methods=["post"],
summary="Session message sending (streaming response)",
)
app.mount(
"/",
StaticFiles(directory="./static/", html=True, follow_symlink=True),
name="static",
)
set_llm_stream_logfunc(llm_stream_log)
def main():
server_config = CONFIG.get("SERVER_UVICORN", {})
uvicorn.run(app="__main__:app", **server_config)
if __name__ == "__main__":
fire.Fire(main)