linkbert / app.py
dejanseo's picture
Update app.py
d598c67 verified
raw
history blame
5.3 kB
import streamlit as st
import torch
import torch.nn.functional as F
from torch.nn.functional import softmax
from transformers import XLMRobertaTokenizerFast, AutoModelForTokenClassification
import pandas as pd
import trafilatura
# Load model and tokenizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = XLMRobertaTokenizerFast.from_pretrained("xlm-roberta-large")
model = AutoModelForTokenClassification.from_pretrained("dejanseo/LinkBERT-XL").to(device)
model.eval()
# Functions
def tokenize_with_indices(text: str):
encoded = tokenizer.encode_plus(text, return_offsets_mapping=True, add_special_tokens=True)
return encoded['input_ids'], encoded['offset_mapping']
def fetch_and_extract_content(url: str):
downloaded = trafilatura.fetch_url(url)
if downloaded:
content = trafilatura.extract(downloaded, include_comments=False, include_tables=False)
return content
return None
def process_text(inputs: str, confidence_threshold: float):
max_chunk_length = 512 - 2
words = inputs.split()
chunk_texts = []
current_chunk = []
current_length = 0
for word in words:
if len(tokenizer.tokenize(word)) + current_length > max_chunk_length:
chunk_texts.append(" ".join(current_chunk))
current_chunk = [word]
current_length = len(tokenizer.tokenize(word))
else:
current_chunk.append(word)
current_length += len(tokenizer.tokenize(word))
chunk_texts.append(" ".join(current_chunk))
df_data = {
'Word': [],
'Prediction': [],
'Confidence': [],
'Start': [],
'End': []
}
reconstructed_text = ""
original_position_offset = 0
for chunk in chunk_texts:
input_ids, token_offsets = tokenize_with_indices(chunk)
predictions = []
input_ids_tensor = torch.tensor(input_ids).unsqueeze(0).to(device)
with torch.no_grad():
outputs = model(input_ids_tensor)
logits = outputs.logits
predictions = torch.argmax(logits, dim=-1).squeeze().tolist()
softmax_scores = F.softmax(logits, dim=-1).squeeze().tolist()
word_info = {}
for idx, (start, end) in enumerate(token_offsets):
if idx == 0 or idx == len(token_offsets) - 1:
continue
word_start = start
while word_start > 0 and chunk[word_start-1] != ' ':
word_start -= 1
if word_start not in word_info:
word_info[word_start] = {'prediction': 0, 'confidence': 0.0, 'subtokens': []}
confidence_percentage = softmax_scores[idx][predictions[idx]] * 100
if predictions[idx] == 1 and confidence_percentage >= confidence_threshold:
word_info[word_start]['prediction'] = 1
word_info[word_start]['confidence'] = max(word_info[word_start]['confidence'], confidence_percentage)
word_info[word_start]['subtokens'].append((start, end, chunk[start:end]))
last_end = 0
for word_start in sorted(word_info.keys()):
word_data = word_info[word_start]
for subtoken_start, subtoken_end, subtoken_text in word_data['subtokens']:
if last_end < subtoken_start:
reconstructed_text += chunk[last_end:subtoken_start]
if word_data['prediction'] == 1:
reconstructed_text += f"<span style='background-color: rgba(0, 255, 0); display: inline;'>{subtoken_text.replace('$', '\\$')}</span>"
else:
reconstructed_text += subtoken_text.replace('$', '\\$')
last_end = subtoken_end
df_data['Word'].append(subtoken_text.replace('$', '\\$'))
df_data['Prediction'].append(word_data['prediction'])
df_data['Confidence'].append(word_info[word_start]['confidence'])
df_data['Start'].append(subtoken_start + original_position_offset)
df_data['End'].append(subtoken_end + original_position_offset)
original_position_offset += len(chunk) + 1
reconstructed_text += chunk[last_end:].replace('$', '\\$')
df_tokens = pd.DataFrame(df_data)
return reconstructed_text, df_tokens
# Streamlit Interface
st.set_page_config(layout="wide")
st.title('SEO by DEJAN: LinkBERT')
confidence_threshold = st.slider('Confidence Threshold', 50, 100, 50)
tab1, tab2 = st.tabs(["Text Input", "URL Input"])
with tab1:
user_input = st.text_area("Enter text to process:")
if st.button('Process Text'):
highlighted_text, df_tokens = process_text(user_input, confidence_threshold)
st.markdown(highlighted_text, unsafe_allow_html=True)
st.dataframe(df_tokens)
with tab2:
url_input = st.text_input("Enter URL to process:")
if st.button('Fetch and Process'):
content = fetch_and_extract_content(url_input)
if content:
highlighted_text, df_tokens = process_text(content, confidence_threshold)
st.markdown(highlighted_text, unsafe_allow_html=True)
st.dataframe(df_tokens)
else:
st.error("Could not fetch content from the URL. Please check the URL and try again.")