Spaces:
Building
Building
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import requests
|
4 |
+
from bs4 import BeautifulSoup
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
7 |
+
from sklearn.manifold import TSNE
|
8 |
+
import numpy as np
|
9 |
+
from numpy.linalg import norm
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import plotly.express as px
|
12 |
+
import re
|
13 |
+
|
14 |
+
# Load the LaBSE model
|
15 |
+
@st.cache_resource
|
16 |
+
def load_model():
|
17 |
+
return SentenceTransformer("sentence-transformers/LaBSE")
|
18 |
+
|
19 |
+
model = load_model()
|
20 |
+
|
21 |
+
def fetch_sitemap_urls(domain):
|
22 |
+
"""Fetch and parse URLs from sitemaps, excluding images and handling nested sitemaps."""
|
23 |
+
domain = domain.replace("https://", "").replace("http://", "").strip("/")
|
24 |
+
sitemap_urls = [
|
25 |
+
f"https://{domain}/sitemap.xml",
|
26 |
+
f"https://{domain}/sitemap_index.xml",
|
27 |
+
f"https://{domain}/robots.txt"
|
28 |
+
]
|
29 |
+
all_urls = []
|
30 |
+
|
31 |
+
for sitemap_url in sitemap_urls:
|
32 |
+
try:
|
33 |
+
response = requests.get(sitemap_url, headers={"User-Agent": "SiteFocusTool/1.0"}, timeout=10)
|
34 |
+
response.raise_for_status()
|
35 |
+
if "robots.txt" in sitemap_url:
|
36 |
+
for line in response.text.splitlines():
|
37 |
+
if line.lower().startswith("sitemap:"):
|
38 |
+
nested_sitemap_url = line.split(":", 1)[1].strip()
|
39 |
+
all_urls.extend(fetch_sitemap_urls_from_xml(nested_sitemap_url, domain, recursive=True))
|
40 |
+
else:
|
41 |
+
all_urls.extend(fetch_sitemap_urls_from_xml(sitemap_url, domain, recursive=True))
|
42 |
+
except requests.RequestException:
|
43 |
+
continue
|
44 |
+
return list(set(all_urls))
|
45 |
+
|
46 |
+
def fetch_sitemap_urls_from_xml(sitemap_url, domain, recursive=False):
|
47 |
+
"""Fetch URLs from a sitemap XML file."""
|
48 |
+
urls = []
|
49 |
+
try:
|
50 |
+
response = requests.get(sitemap_url, headers={"User-Agent": "SiteFocusTool/1.0"}, timeout=10)
|
51 |
+
response.raise_for_status()
|
52 |
+
soup = BeautifulSoup(response.content, "xml")
|
53 |
+
if soup.find_all("sitemap"):
|
54 |
+
for sitemap in soup.find_all("sitemap"):
|
55 |
+
loc = sitemap.find("loc").text
|
56 |
+
if recursive:
|
57 |
+
urls.extend(fetch_sitemap_urls_from_xml(loc, domain, recursive=True))
|
58 |
+
else:
|
59 |
+
for loc in soup.find_all("loc"):
|
60 |
+
url = loc.text
|
61 |
+
if not re.search(r"\.(jpg|jpeg|png|gif|svg|webp|bmp|tif|tiff)$", url, re.IGNORECASE):
|
62 |
+
urls.append(url)
|
63 |
+
except requests.RequestException:
|
64 |
+
pass
|
65 |
+
return urls
|
66 |
+
|
67 |
+
def clean_text_from_url(url, domain):
|
68 |
+
"""Clean URL by removing root domain and extracting readable text."""
|
69 |
+
domain = domain.replace("https://", "").replace("http://", "").strip("/")
|
70 |
+
url = url.replace(f"https://{domain}/", "").replace(f"http://{domain}/", "")
|
71 |
+
text = re.sub(r"[^\w\s]", " ", url)
|
72 |
+
text = text.replace("/", " ").replace("_", " ").replace("-", " ")
|
73 |
+
return text.strip()
|
74 |
+
|
75 |
+
def compute_embeddings(data):
|
76 |
+
"""Generate normalized embeddings for the cleaned text."""
|
77 |
+
data["Embedding"] = data["Cleaned Text"].apply(lambda text: model.encode(text))
|
78 |
+
data["Embedding"] = data["Embedding"].apply(lambda emb: emb / norm(emb)) # Normalize
|
79 |
+
return data
|
80 |
+
|
81 |
+
def calculate_site_focus_and_radius(embeddings):
|
82 |
+
"""Calculate site focus score and site radius."""
|
83 |
+
centroid_embedding = np.mean(embeddings, axis=0)
|
84 |
+
deviations = [1 - cosine_similarity([embedding], [centroid_embedding])[0][0] for embedding in embeddings]
|
85 |
+
site_radius = np.mean(deviations)
|
86 |
+
site_focus_score = max(0, 1 - site_radius)
|
87 |
+
return site_focus_score, site_radius, centroid_embedding, deviations
|
88 |
+
|
89 |
+
def plot_gradient_strip_with_indicator(score, title):
|
90 |
+
"""Visualize the score as a gradient strip with an indicator."""
|
91 |
+
plt.figure(figsize=(8, 1))
|
92 |
+
gradient = np.linspace(0, 1, 256).reshape(1, -1)
|
93 |
+
gradient = np.vstack((gradient, gradient))
|
94 |
+
plt.imshow(gradient, aspect="auto", cmap="RdYlGn_r") # Red to Green reversed for correct mapping
|
95 |
+
plt.axvline(x=score * 256, color="black", linestyle="--", linewidth=2)
|
96 |
+
plt.gca().set_axis_off()
|
97 |
+
plt.title(f"{title}: {score * 100:.2f}%")
|
98 |
+
plt.show()
|
99 |
+
st.pyplot(plt)
|
100 |
+
|
101 |
+
def plot_3d_tsne(embeddings, urls, centroid, deviations):
|
102 |
+
"""Interactive 3D t-SNE scatter plot with hover labels."""
|
103 |
+
tsne = TSNE(n_components=3, random_state=42, perplexity=min(30, len(embeddings) - 1))
|
104 |
+
tsne_results = tsne.fit_transform(np.vstack([embeddings, centroid]))
|
105 |
+
centroid_tsne = tsne_results[-1] # Last point is the centroid
|
106 |
+
tsne_results = tsne_results[:-1] # Remaining points are pages
|
107 |
+
|
108 |
+
fig = px.scatter_3d(
|
109 |
+
x=tsne_results[:, 0],
|
110 |
+
y=tsne_results[:, 1],
|
111 |
+
z=tsne_results[:, 2],
|
112 |
+
color=deviations,
|
113 |
+
color_continuous_scale="RdYlGn_r",
|
114 |
+
hover_name=urls,
|
115 |
+
labels={"color": "Deviation"},
|
116 |
+
title="3D t-SNE Projection of Page Embeddings"
|
117 |
+
)
|
118 |
+
fig.add_scatter3d(
|
119 |
+
x=[centroid_tsne[0]],
|
120 |
+
y=[centroid_tsne[1]],
|
121 |
+
z=[centroid_tsne[2]],
|
122 |
+
mode="markers",
|
123 |
+
marker=dict(size=15, color="green"),
|
124 |
+
name="Centroid"
|
125 |
+
)
|
126 |
+
st.plotly_chart(fig)
|
127 |
+
|
128 |
+
def plot_spherical_distances_optimized(deviations, embeddings, urls):
|
129 |
+
"""Improved scatter plot showing distances in a spherical layout with better angle distribution."""
|
130 |
+
# Normalize embeddings
|
131 |
+
normalized_embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
|
132 |
+
num_points = len(deviations)
|
133 |
+
angles = np.linspace(0, 2 * np.pi, num_points, endpoint=False) # Spread angles evenly
|
134 |
+
|
135 |
+
# Create polar scatter plot
|
136 |
+
fig = px.scatter_polar(
|
137 |
+
r=deviations,
|
138 |
+
theta=np.degrees(angles),
|
139 |
+
color=deviations,
|
140 |
+
color_continuous_scale="RdYlGn_r",
|
141 |
+
title="Optimized Spherical Plot of Page Distances from Centroid",
|
142 |
+
labels={"color": "Deviation"}
|
143 |
+
)
|
144 |
+
# Update traces to show text (labels) only on hover
|
145 |
+
fig.update_traces(
|
146 |
+
mode="markers", # Display only markers by default
|
147 |
+
hovertemplate="%{text}<extra></extra>", # Show text on hover
|
148 |
+
text=urls # Set URLs as hover labels
|
149 |
+
)
|
150 |
+
st.plotly_chart(fig)
|
151 |
+
|
152 |
+
# Streamlit Interface
|
153 |
+
st.title("SiteFocus Tool")
|
154 |
+
|
155 |
+
domain = st.text_input("Enter domain:", placeholder="example.com")
|
156 |
+
|
157 |
+
if st.button("START"):
|
158 |
+
if domain:
|
159 |
+
urls = fetch_sitemap_urls(domain)
|
160 |
+
if not urls:
|
161 |
+
st.error("No URLs found. Please check the domain and try again.")
|
162 |
+
else:
|
163 |
+
cleaned_texts = [clean_text_from_url(url, domain) for url in urls]
|
164 |
+
embeddings = np.array([model.encode(text) / norm(model.encode(text)) for text in cleaned_texts])
|
165 |
+
site_focus_score, site_radius, centroid, deviations = calculate_site_focus_and_radius(embeddings)
|
166 |
+
|
167 |
+
# Visualize siteFocusScore
|
168 |
+
st.subheader("siteFocusScore")
|
169 |
+
st.markdown("**Description:** The siteFocusScore reflects how tightly aligned a site's content is to a single thematic area. A higher score indicates greater thematic focus, which can improve topical authority in SEO.")
|
170 |
+
plot_gradient_strip_with_indicator(site_focus_score, "siteFocusScore")
|
171 |
+
|
172 |
+
# Visualize siteRadius
|
173 |
+
st.subheader("siteRadius")
|
174 |
+
st.markdown("**Description:** The siteRadius measures how far individual pages deviate from the site's central theme. A smaller radius indicates higher consistency across the site, which is beneficial for SEO.")
|
175 |
+
plot_gradient_strip_with_indicator(site_radius, "siteRadius")
|
176 |
+
|
177 |
+
# Sorted dataframe by closeness to centroid
|
178 |
+
st.subheader("Pages Closest to Centroid")
|
179 |
+
distances = [1 - dev for dev in deviations]
|
180 |
+
df = pd.DataFrame({"URL": urls, "Distance to Centroid": distances})
|
181 |
+
df_sorted = df.sort_values(by="Distance to Centroid", ascending=False)
|
182 |
+
st.dataframe(df_sorted)
|
183 |
+
|
184 |
+
# Interactive 3D t-SNE plot
|
185 |
+
st.subheader("3D t-SNE Projection")
|
186 |
+
plot_3d_tsne(embeddings, urls, centroid, deviations)
|
187 |
+
|
188 |
+
# Optimized spherical distance plot
|
189 |
+
st.subheader("Spherical Distance Plot")
|
190 |
+
plot_spherical_distances_optimized(deviations, embeddings, urls)
|