import gradio as gr from transformers import pipeline pipe = pipeline(model="delarosajav95/tw-roberta-base-sentiment-FT-v2") #function that Gradio will use to classify def classify_text(inputs): result = pipe(inputs, return_all_scores=True) output = [] label_mapping = {"LABEL_0": "Negative", "LABEL_1": "Neutral", "LABEL_2": "Positive"} for i, predictions in enumerate(result): for pred in predictions: label = label_mapping.get(pred['label'], pred['label']) score = pred['score'] output.append(f"{label}: {score:.2%}") return "\n".join(output) #defining Gradio interface textbox = gr.Textbox(lines=3, placeholder="Enter a user review, comment, or opinion to evaluate...(e.g., 'I love this product! It looks great.')", label="User Review/Comment:") output_box = gr.Textbox(label="Results:") iface = gr.Interface( fn=classify_text, inputs=textbox, outputs=output_box, live=True, title="Sentiment Analysis for User Opinions & Feedback", allow_flagging="never", ) # Launch the interface iface.launch()