Nathan Habib commited on
Commit
20d8830
·
1 Parent(s): f485a37

fixing unshowed models with using search bar

Browse files
Files changed (1) hide show
  1. app.py +2 -13
app.py CHANGED
@@ -100,11 +100,6 @@ models = original_df["model_name_for_query"].tolist() # needed for model backlin
100
 
101
  to_be_dumped = f"models = {repr(models)}\n"
102
 
103
- # with open("models_backlinks.py", "w") as f:
104
- # f.write(to_be_dumped)
105
-
106
- # print(to_be_dumped)
107
-
108
  leaderboard_df = original_df.copy()
109
  (
110
  finished_eval_queue_df,
@@ -112,8 +107,6 @@ leaderboard_df = original_df.copy()
112
  pending_eval_queue_df,
113
  ) = get_evaluation_queue_df(eval_queue, eval_queue_private, EVAL_REQUESTS_PATH, EVAL_COLS)
114
 
115
- print(leaderboard_df["Precision"].unique())
116
-
117
 
118
  ## INTERACTION FUNCTIONS
119
  def add_new_eval(
@@ -225,7 +218,6 @@ def update_table(hidden_df: pd.DataFrame, current_columns_df: pd.DataFrame, colu
225
  return df
226
 
227
  def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
228
- print(query)
229
  return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
230
 
231
  def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
@@ -259,9 +251,8 @@ def filter_models(
259
  filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
260
 
261
  type_emoji = [t[0] for t in type_query]
262
- print(type_emoji)
263
- filtered_df = filtered_df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
264
- filtered_df = filtered_df[df[AutoEvalColumn.precision.name].isin(precision_query)]
265
 
266
  numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
267
  params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
@@ -327,14 +318,12 @@ with demo:
327
  ModelType.FT.to_str(),
328
  ModelType.IFT.to_str(),
329
  ModelType.RL.to_str(),
330
- ModelType.Unknown.to_str(),
331
  ],
332
  value=[
333
  ModelType.PT.to_str(),
334
  ModelType.FT.to_str(),
335
  ModelType.IFT.to_str(),
336
  ModelType.RL.to_str(),
337
- ModelType.Unknown.to_str(),
338
  ],
339
  interactive=True,
340
  elem_id="filter-columns-type",
 
100
 
101
  to_be_dumped = f"models = {repr(models)}\n"
102
 
 
 
 
 
 
103
  leaderboard_df = original_df.copy()
104
  (
105
  finished_eval_queue_df,
 
107
  pending_eval_queue_df,
108
  ) = get_evaluation_queue_df(eval_queue, eval_queue_private, EVAL_REQUESTS_PATH, EVAL_COLS)
109
 
 
 
110
 
111
  ## INTERACTION FUNCTIONS
112
  def add_new_eval(
 
218
  return df
219
 
220
  def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
 
221
  return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
222
 
223
  def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
 
251
  filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
252
 
253
  type_emoji = [t[0] for t in type_query]
254
+ filtered_df = filtered_df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji + ["?"])]
255
+ filtered_df = filtered_df[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
 
256
 
257
  numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
258
  params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
 
318
  ModelType.FT.to_str(),
319
  ModelType.IFT.to_str(),
320
  ModelType.RL.to_str(),
 
321
  ],
322
  value=[
323
  ModelType.PT.to_str(),
324
  ModelType.FT.to_str(),
325
  ModelType.IFT.to_str(),
326
  ModelType.RL.to_str(),
 
327
  ],
328
  interactive=True,
329
  elem_id="filter-columns-type",