Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Nathan Habib
commited on
Commit
·
20d8830
1
Parent(s):
f485a37
fixing unshowed models with using search bar
Browse files
app.py
CHANGED
@@ -100,11 +100,6 @@ models = original_df["model_name_for_query"].tolist() # needed for model backlin
|
|
100 |
|
101 |
to_be_dumped = f"models = {repr(models)}\n"
|
102 |
|
103 |
-
# with open("models_backlinks.py", "w") as f:
|
104 |
-
# f.write(to_be_dumped)
|
105 |
-
|
106 |
-
# print(to_be_dumped)
|
107 |
-
|
108 |
leaderboard_df = original_df.copy()
|
109 |
(
|
110 |
finished_eval_queue_df,
|
@@ -112,8 +107,6 @@ leaderboard_df = original_df.copy()
|
|
112 |
pending_eval_queue_df,
|
113 |
) = get_evaluation_queue_df(eval_queue, eval_queue_private, EVAL_REQUESTS_PATH, EVAL_COLS)
|
114 |
|
115 |
-
print(leaderboard_df["Precision"].unique())
|
116 |
-
|
117 |
|
118 |
## INTERACTION FUNCTIONS
|
119 |
def add_new_eval(
|
@@ -225,7 +218,6 @@ def update_table(hidden_df: pd.DataFrame, current_columns_df: pd.DataFrame, colu
|
|
225 |
return df
|
226 |
|
227 |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
228 |
-
print(query)
|
229 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
230 |
|
231 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
@@ -259,9 +251,8 @@ def filter_models(
|
|
259 |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
260 |
|
261 |
type_emoji = [t[0] for t in type_query]
|
262 |
-
|
263 |
-
filtered_df = filtered_df[df[AutoEvalColumn.
|
264 |
-
filtered_df = filtered_df[df[AutoEvalColumn.precision.name].isin(precision_query)]
|
265 |
|
266 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
267 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
@@ -327,14 +318,12 @@ with demo:
|
|
327 |
ModelType.FT.to_str(),
|
328 |
ModelType.IFT.to_str(),
|
329 |
ModelType.RL.to_str(),
|
330 |
-
ModelType.Unknown.to_str(),
|
331 |
],
|
332 |
value=[
|
333 |
ModelType.PT.to_str(),
|
334 |
ModelType.FT.to_str(),
|
335 |
ModelType.IFT.to_str(),
|
336 |
ModelType.RL.to_str(),
|
337 |
-
ModelType.Unknown.to_str(),
|
338 |
],
|
339 |
interactive=True,
|
340 |
elem_id="filter-columns-type",
|
|
|
100 |
|
101 |
to_be_dumped = f"models = {repr(models)}\n"
|
102 |
|
|
|
|
|
|
|
|
|
|
|
103 |
leaderboard_df = original_df.copy()
|
104 |
(
|
105 |
finished_eval_queue_df,
|
|
|
107 |
pending_eval_queue_df,
|
108 |
) = get_evaluation_queue_df(eval_queue, eval_queue_private, EVAL_REQUESTS_PATH, EVAL_COLS)
|
109 |
|
|
|
|
|
110 |
|
111 |
## INTERACTION FUNCTIONS
|
112 |
def add_new_eval(
|
|
|
218 |
return df
|
219 |
|
220 |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
|
|
221 |
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
222 |
|
223 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
|
251 |
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
252 |
|
253 |
type_emoji = [t[0] for t in type_query]
|
254 |
+
filtered_df = filtered_df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji + ["?"])]
|
255 |
+
filtered_df = filtered_df[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
|
|
256 |
|
257 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
258 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
|
|
318 |
ModelType.FT.to_str(),
|
319 |
ModelType.IFT.to_str(),
|
320 |
ModelType.RL.to_str(),
|
|
|
321 |
],
|
322 |
value=[
|
323 |
ModelType.PT.to_str(),
|
324 |
ModelType.FT.to_str(),
|
325 |
ModelType.IFT.to_str(),
|
326 |
ModelType.RL.to_str(),
|
|
|
327 |
],
|
328 |
interactive=True,
|
329 |
elem_id="filter-columns-type",
|