import os from huggingface_hub import HfApi # Info to change for your repository # ---------------------------------- TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset # For harness evaluations DEVICE = "cpu" # "cuda:0" if you add compute, for harness evaluations LIMIT = 20 # !!!! For testing, should be None for actual evaluations!!! NUM_FEWSHOT = 0 # Change with your few shot for the Harness evaluations TASKS_HARNESS = ["anli_r1", "logiqa"] # For lighteval evaluations ACCELERATOR = "cpu" REGION = "us-east-1" VENDOR = "aws" TASKS_LIGHTEVAL = "lighteval|anli:r1|0|0,lighteval|logiqa|0|0" # To add your own tasks, edit the custom file and launch it with `custom|myothertask|0|0`` # --------------------------------------------------- REPO_ID = f"{OWNER}/leaderboard" QUEUE_REPO = f"{OWNER}/requests" RESULTS_REPO = f"{OWNER}/results" # If you setup a cache later, just change HF_HOME CACHE_PATH=os.getenv("HF_HOME", ".") # Local caches EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue") EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results") EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk") EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk") REFRESH_RATE = 10 * 60 # 10 min NUM_LINES_VISUALIZE = 300 API = HfApi(token=TOKEN)