Spaces:
Runtime error
Runtime error
import transformers | |
import gradio as gr | |
import torch | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
tokenizer = GPT2Tokenizer.from_pretrained('dennis-fast/DialoGPT-ElonMusk') | |
model = GPT2LMHeadModel.from_pretrained('dennis-fast/DialoGPT-ElonMusk') | |
def predict(input, history=[]): | |
# tokenize the new input sentence | |
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') | |
# append the new user input tokens to the chat history | |
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) | |
# generate a response | |
history = model.generate(bot_input_ids, | |
max_length=1000, | |
pad_token_id=tokenizer.eos_token_id, | |
#no_repeat_ngram_size=3, | |
#num_beams = 3, | |
#do_sample=True, | |
#top_k=20, | |
#top_p=0.8, | |
#temperature=0.8 | |
).tolist() | |
# convert the tokens to text, and then split the responses into the right format | |
response = tokenizer.decode(history[0]).split("<|endoftext|>") | |
response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list | |
return response, history | |
gr.Interface(fn=predict, | |
theme="default", | |
css=".footer {display:none !important}", | |
inputs=["text", "state"], | |
examples=[['Hi, please introduce yourself.'],['Where do you live?'],['What is meaning of life?'],['Should I buy Dogecoin?']], | |
outputs=["chatbot", "state"]).launch() |