Spaces:
Build error
Build error
import transformers | |
import gradio as gr | |
import torch | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
tokenizer = GPT2Tokenizer.from_pretrained('microsoft/DialoGPT-small') | |
model = GPT2LMHeadModel.from_pretrained('microsoft/DialoGPT-small') | |
model.eval() | |
def chat(message, history): | |
history = history or [] | |
new_user_input_ids = tokenizer.encode(message + tokenizer.eos_token, return_tensors='pt') | |
if len(history) > 0 and len(history) < 2: | |
for i in range(0,len(history)): | |
encoded_message = tokenizer.encode(history[i][0] + tokenizer.eos_token, return_tensors='pt') | |
encoded_response = tokenizer.encode(history[i][1] + tokenizer.eos_token, return_tensors='pt') | |
if i == 0: | |
chat_history_ids = encoded_message | |
chat_history_ids = torch.cat([chat_history_ids,encoded_response], dim=-1) | |
else: | |
chat_history_ids = torch.cat([chat_history_ids,encoded_message], dim=-1) | |
chat_history_ids = torch.cat([chat_history_ids,encoded_response], dim=-1) | |
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) | |
elif len(history) >= 2: | |
for i in range(len(history)-1, len(history)): | |
encoded_message = tokenizer.encode(history[i][0] + tokenizer.eos_token, return_tensors='pt') | |
encoded_response = tokenizer.encode(history[i][1] + tokenizer.eos_token, return_tensors='pt') | |
if i == (len(history)-1): | |
chat_history_ids = encoded_message | |
chat_history_ids = torch.cat([chat_history_ids,encoded_response], dim=-1) | |
else: | |
chat_history_ids = torch.cat([chat_history_ids,encoded_message], dim=-1) | |
chat_history_ids = torch.cat([chat_history_ids,encoded_response], dim=-1) | |
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) | |
elif len(history) == 0: | |
bot_input_ids = new_user_input_ids | |
chat_history_ids = model.generate(bot_input_ids, max_length=1000, do_sample=True, top_p=0.9, temperature=0.8, pad_token_id=tokenizer.eos_token_id) | |
response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) | |
history.append((message, response)) | |
return history, history | |
title = "DialoGPT-small" | |
description = "Gradio demo for dialog using DialoGPT" | |
iface = gr.Interface( | |
chat, | |
["text", "state"], | |
["chatbot", "state"], | |
allow_screenshot=False, | |
allow_flagging="never", | |
title=title, | |
description=description | |
) | |
iface.launch(debug=True) |