chatbot / app.py
Елена Fomina
Add application file
a602c25
raw
history blame
2.49 kB
import transformers
import gradio as gr
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer
tokenizer = GPT2Tokenizer.from_pretrained('microsoft/DialoGPT-small')
model = GPT2LMHeadModel.from_pretrained('microsoft/DialoGPT-small')
model.eval()
def chat(message, history):
history = history or []
new_user_input_ids = tokenizer.encode(message + tokenizer.eos_token, return_tensors='pt')
if len(history) > 0 and len(history) < 2:
for i in range(0,len(history)):
encoded_message = tokenizer.encode(history[i][0] + tokenizer.eos_token, return_tensors='pt')
encoded_response = tokenizer.encode(history[i][1] + tokenizer.eos_token, return_tensors='pt')
if i == 0:
chat_history_ids = encoded_message
chat_history_ids = torch.cat([chat_history_ids,encoded_response], dim=-1)
else:
chat_history_ids = torch.cat([chat_history_ids,encoded_message], dim=-1)
chat_history_ids = torch.cat([chat_history_ids,encoded_response], dim=-1)
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1)
elif len(history) >= 2:
for i in range(len(history)-1, len(history)):
encoded_message = tokenizer.encode(history[i][0] + tokenizer.eos_token, return_tensors='pt')
encoded_response = tokenizer.encode(history[i][1] + tokenizer.eos_token, return_tensors='pt')
if i == (len(history)-1):
chat_history_ids = encoded_message
chat_history_ids = torch.cat([chat_history_ids,encoded_response], dim=-1)
else:
chat_history_ids = torch.cat([chat_history_ids,encoded_message], dim=-1)
chat_history_ids = torch.cat([chat_history_ids,encoded_response], dim=-1)
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1)
elif len(history) == 0:
bot_input_ids = new_user_input_ids
chat_history_ids = model.generate(bot_input_ids, max_length=1000, do_sample=True, top_p=0.9, temperature=0.8, pad_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
history.append((message, response))
return history, history
title = "DialoGPT-small"
description = "Gradio demo for dialog using DialoGPT"
iface = gr.Interface(
chat,
["text", "state"],
["chatbot", "state"],
allow_screenshot=False,
allow_flagging="never",
title=title,
description=description
)
iface.launch(debug=True)