dennis-fast commited on
Commit
c5d4354
1 Parent(s): 443f792

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -68
app.py CHANGED
@@ -28,78 +28,11 @@ def predict(input, history=[]):
28
  # convert the tokens to text, and then split the responses into lines
29
  response = tokenizer.decode(history[0]).split("<|endoftext|>")
30
  response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
31
- #response.remove("")
32
-
33
- # write some HTML
34
- html = "<div class='chatbot'>"
35
- for m, msg in enumerate(response):
36
- cls = "user" if m%2 == 0 else "bot"
37
- html += "<div class='msg {}'> {}</div>".format(cls, msg)
38
- html += "</div>"
39
 
40
  return response, history
41
- #return html, history
42
 
43
- css = """
44
- .chatbox {display:flex;flex-direction:column}
45
- .msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%}
46
- .msg.user {background-color:cornflowerblue;color:white;margin-right:10px}
47
- .msg.bot {background-color:lightgray;align-self:self-end;margin-left:10px}
48
- .footer {display:none !important}
49
- """
50
-
51
  gr.Interface(fn=predict,
52
- theme="grass",
53
  title="DialoGPT-large",
54
  inputs=["text", "state"],
55
  outputs=["chatbot", "state"],
56
- #css=css
57
- ).launch()
58
-
59
- '''
60
- from transformers import AutoModelForCausalLM, AutoTokenizer
61
- import torch
62
-
63
- tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
64
- model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
65
-
66
- def predict(input, history=[]):
67
- # tokenize the new input sentence
68
- new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
69
-
70
- # append the new user input tokens to the chat history
71
- bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
72
-
73
- # generate a response
74
- history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
75
-
76
- # convert the tokens to text, and then split the responses into lines
77
- response = tokenizer.decode(history[0]).split("<|endoftext|>")
78
- response.remove("")
79
-
80
- # write some HTML
81
- html = "<div class='chatbot'>"
82
- for m, msg in enumerate(response):
83
- cls = "user" if m%2 == 0 else "bot"
84
- html += "<div class='msg {}'> {}</div>".format(cls, msg)
85
- html += "</div>"
86
-
87
- return html, history
88
-
89
- import gradio as gr
90
-
91
- css = """
92
- .chatbox {display:flex;flex-direction:column}
93
- .msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%}
94
- .msg.user {background-color:cornflowerblue;color:white}
95
- .msg.bot {background-color:lightgray;align-self:self-end}
96
- .footer {display:none !important}
97
- """
98
-
99
- gr.Interface(fn=predict,
100
- theme="default",
101
- inputs=[gr.inputs.Textbox(placeholder="How are you?"), "state"],
102
- outputs=["html", "state"],
103
- css=css).launch()
104
- '''
105
-
 
28
  # convert the tokens to text, and then split the responses into lines
29
  response = tokenizer.decode(history[0]).split("<|endoftext|>")
30
  response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
 
 
 
 
 
 
 
 
31
 
32
  return response, history
 
33
 
 
 
 
 
 
 
 
 
34
  gr.Interface(fn=predict,
 
35
  title="DialoGPT-large",
36
  inputs=["text", "state"],
37
  outputs=["chatbot", "state"],
38
+ ).launch()