import transformers import gradio as gr import torch from transformers import GPT2LMHeadModel, GPT2Tokenizer model_name = 'microsoft/DialoGPT-large' tokenizer = GPT2Tokenizer.from_pretrained(model_name) model = GPT2LMHeadModel.from_pretrained(model_name) def predict(input, history=[]): # tokenize the new input sentence new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) # generate a response history = model.generate( bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, top_p = 0.92, top_k = 50 ).tolist() # convert the tokens to text, and then split the responses into lines response = tokenizer.decode(history[0]).split("<|endoftext|>") response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list #response.remove("") # write some HTML html = "
" for m, msg in enumerate(response): cls = "user" if m%2 == 0 else "bot" html += "
{}
".format(cls, msg) html += "
" return response, history #return html, history css = """ .chatbox {display:flex;flex-direction:column} .msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%} .msg.user {background-color:cornflowerblue;color:white;margin-right:10px} .msg.bot {background-color:lightgray;align-self:self-end;margin-left:10px} .footer {display:none !important} """ gr.Interface(fn=predict, theme="grass", title="DialoGPT-large", inputs=["text", "state"], outputs=["chatbot", "state"], #css=css ).launch() ''' from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") def predict(input, history=[]): # tokenize the new input sentence new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) # generate a response history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist() # convert the tokens to text, and then split the responses into lines response = tokenizer.decode(history[0]).split("<|endoftext|>") response.remove("") # write some HTML html = "
" for m, msg in enumerate(response): cls = "user" if m%2 == 0 else "bot" html += "
{}
".format(cls, msg) html += "
" return html, history import gradio as gr css = """ .chatbox {display:flex;flex-direction:column} .msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%} .msg.user {background-color:cornflowerblue;color:white} .msg.bot {background-color:lightgray;align-self:self-end} .footer {display:none !important} """ gr.Interface(fn=predict, theme="default", inputs=[gr.inputs.Textbox(placeholder="How are you?"), "state"], outputs=["html", "state"], css=css).launch() '''