import transformers import gradio as gr import torch from transformers import GPT2LMHeadModel, GPT2Tokenizer model_name = 'microsoft/DialoGPT-large' tokenizer = GPT2Tokenizer.from_pretrained(model_name) model = GPT2LMHeadModel.from_pretrained(model_name) def predict(input, history=[]): # tokenize the new input sentence new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) # generate a response history = model.generate( bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, top_p = 0.92, top_k = 50 ).tolist() # convert the tokens to text, and then split the responses into lines response = tokenizer.decode(history[0]).split("<|endoftext|>") response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list return response, history gr.Interface(fn=predict, title="DialoGPT-large", inputs=["text", "state"], outputs=["chatbot", "state"], ).launch()