dennistrujillo commited on
Commit
9ba0bac
·
verified ·
1 Parent(s): f2cd85c

Updated load_image to convert image to 3 channels if needed

Browse files
Files changed (1) hide show
  1. app.py +7 -8
app.py CHANGED
@@ -10,19 +10,18 @@ import matplotlib.pyplot as plt
10
  from PIL import Image
11
  import io
12
 
13
- # Function to load bounding boxes from CSV
14
- def load_bounding_boxes(csv_file):
15
- # Assuming CSV file has columns: 'filename', 'x_min', 'y_min', 'x_max', 'y_max'
16
- df = pd.read_csv(csv_file)
17
- return df
18
-
19
  def load_image(file_path):
20
  if file_path.endswith(".dcm"):
21
  ds = pydicom.dcmread(file_path)
22
  img = ds.pixel_array
23
  else:
24
- img = np.array(Image.open(file_path).convert('L')) # Convert to grayscale
25
- H, W = img.shape
 
 
 
 
 
26
  return img, H, W
27
 
28
  # MedSAM inference function
 
10
  from PIL import Image
11
  import io
12
 
 
 
 
 
 
 
13
  def load_image(file_path):
14
  if file_path.endswith(".dcm"):
15
  ds = pydicom.dcmread(file_path)
16
  img = ds.pixel_array
17
  else:
18
+ img = np.array(Image.open(file_path))
19
+
20
+ # Convert grayscale to 3-channel RGB by replicating channels
21
+ if len(img.shape) == 2: # Grayscale image (height, width)
22
+ img = np.stack((img,)*3, axis=-1) # Replicate grayscale channel to get (height, width, 3)
23
+
24
+ H, W = img.shape[:2]
25
  return img, H, W
26
 
27
  # MedSAM inference function