|
|
|
|
|
from keras import models, layers |
|
from skimage.io import imread |
|
import numpy as np |
|
import cv2 |
|
|
|
t_x_shape = (300, 300, 3) |
|
GAUSSIAN_NOISE = 0.1 |
|
BASE_DEPTH = 16 |
|
BLOCK_COUNT = 1 |
|
SPATIAL_DROPOUT = 0.25 |
|
EDGE_CROP = 16 |
|
|
|
|
|
def conv_bn(x, filt, dl_rate=(1,1), preblock = False): |
|
y = layers.Convolution2D(filt, (3, 3), |
|
activation='linear', |
|
padding='same', |
|
dilation_rate=dl_rate, |
|
use_bias=False)(x) |
|
if preblock: return y |
|
y = layers.BatchNormalization()(y) |
|
return layers.Activation('elu')(y) |
|
|
|
def keras_model(): |
|
in_layer = layers.Input(t_x_shape, name = 'RGB_Input') |
|
pp_in_layer = layers.GaussianNoise(GAUSSIAN_NOISE)(in_layer) |
|
pp_in_layer = layers.BatchNormalization()(pp_in_layer) |
|
|
|
c = conv_bn(pp_in_layer, BASE_DEPTH//2) |
|
c = conv_bn(c, BASE_DEPTH//2) |
|
c = conv_bn(c, BASE_DEPTH) |
|
|
|
skip_layers = [pp_in_layer] |
|
for j in range(BLOCK_COUNT): |
|
depth_steps = int(np.log2(t_x_shape[0])-2) |
|
d = layers.concatenate(skip_layers+[conv_bn(c, BASE_DEPTH*2**j, (2**i, 2**i), preblock=True) |
|
for i in range(depth_steps)]) |
|
d = layers.SpatialDropout2D(SPATIAL_DROPOUT)(d) |
|
d = layers.BatchNormalization()(d) |
|
d = layers.Activation('elu')(d) |
|
|
|
d = conv_bn(d, BASE_DEPTH*2**(j+1)) |
|
skip_layers += [c] |
|
c = d |
|
d = layers.Convolution2D(1, (1, 1), activation='sigmoid', padding='same')(d) |
|
d = layers.Cropping2D((EDGE_CROP, EDGE_CROP))(d) |
|
d = layers.ZeroPadding2D((EDGE_CROP, EDGE_CROP))(d) |
|
|
|
seg_model = models.Model(inputs = [in_layer],outputs = [d]) |
|
|
|
return seg_model |
|
|
|
def load_model(weight_path): |
|
seg_model = keras_model() |
|
seg_model.load_weights(weight_path) |
|
return seg_model |
|
|
|
def preprocess_image(img_data): |
|
img_data = imread(img_data) |
|
|
|
if img_data.shape[:2] == (300, 300): |
|
img_data = img_data |
|
else: |
|
img_data = cv2.resize(img_data, (300, 300)) |
|
|
|
out_img = [] |
|
out_img += [img_data] |
|
|
|
out_img = (np.stack(out_img, 0)/255.0).astype(np.float32) |
|
return out_img |
|
|
|
|
|
def attempt_download_from_hub(repo_id, hf_token=None): |
|
|
|
from huggingface_hub import hf_hub_download, list_repo_files |
|
from huggingface_hub.utils._errors import RepositoryNotFoundError |
|
from huggingface_hub.utils._validators import HFValidationError |
|
try: |
|
repo_files = list_repo_files(repo_id=repo_id, repo_type='model', token=hf_token) |
|
model_file = [f for f in repo_files if f.endswith('.h5')][0] |
|
file = hf_hub_download( |
|
repo_id=repo_id, |
|
filename=model_file, |
|
repo_type='model', |
|
token=hf_token, |
|
) |
|
return file |
|
except (RepositoryNotFoundError, HFValidationError): |
|
return None |
|
|