import cv2 import h5py import numpy as np import torch from torch.utils.data import Dataset from torchvision.transforms import Compose from dataset.transform import Resize, NormalizeImage, PrepareForNet, Crop def hypersim_distance_to_depth(npyDistance): intWidth, intHeight, fltFocal = 1024, 768, 886.81 npyImageplaneX = np.linspace((-0.5 * intWidth) + 0.5, (0.5 * intWidth) - 0.5, intWidth).reshape( 1, intWidth).repeat(intHeight, 0).astype(np.float32)[:, :, None] npyImageplaneY = np.linspace((-0.5 * intHeight) + 0.5, (0.5 * intHeight) - 0.5, intHeight).reshape(intHeight, 1).repeat(intWidth, 1).astype(np.float32)[:, :, None] npyImageplaneZ = np.full([intHeight, intWidth, 1], fltFocal, np.float32) npyImageplane = np.concatenate( [npyImageplaneX, npyImageplaneY, npyImageplaneZ], 2) npyDepth = npyDistance / np.linalg.norm(npyImageplane, 2, 2) * fltFocal return npyDepth class Hypersim(Dataset): def __init__(self, filelist_path, mode, size=(518, 518)): self.mode = mode self.size = size with open(filelist_path, 'r') as f: self.filelist = f.read().splitlines() net_w, net_h = size self.transform = Compose([ Resize( width=net_w, height=net_h, resize_target=True if mode == 'train' else False, keep_aspect_ratio=True, ensure_multiple_of=14, resize_method='lower_bound', image_interpolation_method=cv2.INTER_CUBIC, ), NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), PrepareForNet(), ] + ([Crop(size[0])] if self.mode == 'train' else [])) def __getitem__(self, item): img_path = self.filelist[item].split(' ')[0] depth_path = self.filelist[item].split(' ')[1] image = cv2.imread(img_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0 depth_fd = h5py.File(depth_path, "r") distance_meters = np.array(depth_fd['dataset']) depth = hypersim_distance_to_depth(distance_meters) sample = self.transform({'image': image, 'depth': depth}) sample['image'] = torch.from_numpy(sample['image']) sample['depth'] = torch.from_numpy(sample['depth']) sample['valid_mask'] = (torch.isnan(sample['depth']) == 0) sample['depth'][sample['valid_mask'] == 0] = 0 sample['image_path'] = self.filelist[item].split(' ')[0] return sample def __len__(self): return len(self.filelist)