File size: 5,285 Bytes
98844c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.

from enum import Enum
from typing import Union

import torch

_DINOV2_BASE_URL = "https://dl.fbaipublicfiles.com/dinov2"


def _make_dinov2_model_name(arch_name: str, patch_size: int, num_register_tokens: int = 0) -> str:
    compact_arch_name = arch_name.replace("_", "")[:4]
    registers_suffix = f"_reg{num_register_tokens}" if num_register_tokens else ""
    return f"dinov2_{compact_arch_name}{patch_size}{registers_suffix}"


class Weights(Enum):
    LVD142M = "LVD142M"


def _make_dinov2_model(
    *,
    arch_name: str = "vit_large",
    img_size: int = 518,
    patch_size: int = 14,
    init_values: float = 1.0,
    ffn_layer: str = "mlp",
    block_chunks: int = 0,
    num_register_tokens: int = 0,
    interpolate_antialias: bool = False,
    interpolate_offset: float = 0.1,
    pretrained: bool = True,
    weights: Union[Weights, str] = Weights.LVD142M,
    **kwargs,
):
    import vision_transformer as vits

    if isinstance(weights, str):
        try:
            weights = Weights[weights]
        except KeyError:
            raise AssertionError(f"Unsupported weights: {weights}")

    model_base_name = _make_dinov2_model_name(arch_name, patch_size)
    vit_kwargs = dict(
        img_size=img_size,
        patch_size=patch_size,
        init_values=init_values,
        ffn_layer=ffn_layer,
        block_chunks=block_chunks,
        num_register_tokens=num_register_tokens,
        interpolate_antialias=interpolate_antialias,
        interpolate_offset=interpolate_offset,
    )
    vit_kwargs.update(**kwargs)
    model = vits.__dict__[arch_name](**vit_kwargs)

    if pretrained:
        model_full_name = _make_dinov2_model_name(arch_name, patch_size, num_register_tokens)
        url = _DINOV2_BASE_URL + f"/{model_base_name}/{model_full_name}_pretrain.pth"
        state_dict = torch.hub.load_state_dict_from_url(url, map_location="cpu")
        model.load_state_dict(state_dict, strict=True)

    return model


def dinov2_vits14(*, pretrained: bool = True, weights: Union[Weights, str] = Weights.LVD142M, **kwargs):
    """
    DINOv2 ViT-S/14 model (optionally) pretrained on the LVD-142M dataset.
    """
    return _make_dinov2_model(arch_name="vit_small", pretrained=pretrained, weights=weights, **kwargs)


def dinov2_vitb14(*, pretrained: bool = True, weights: Union[Weights, str] = Weights.LVD142M, **kwargs):
    """
    DINOv2 ViT-B/14 model (optionally) pretrained on the LVD-142M dataset.
    """
    return _make_dinov2_model(arch_name="vit_base", pretrained=pretrained, weights=weights, **kwargs)


def dinov2_vitl14(*, pretrained: bool = True, weights: Union[Weights, str] = Weights.LVD142M, **kwargs):
    """
    DINOv2 ViT-L/14 model (optionally) pretrained on the LVD-142M dataset.
    """
    return _make_dinov2_model(arch_name="vit_large", pretrained=pretrained, weights=weights, **kwargs)


def dinov2_vitg14(*, pretrained: bool = True, weights: Union[Weights, str] = Weights.LVD142M, **kwargs):
    """
    DINOv2 ViT-g/14 model (optionally) pretrained on the LVD-142M dataset.
    """
    return _make_dinov2_model(
        arch_name="vit_giant2",
        ffn_layer="swiglufused",
        weights=weights,
        pretrained=pretrained,
        **kwargs,
    )


def dinov2_vits14_reg(*, pretrained: bool = True, weights: Union[Weights, str] = Weights.LVD142M, **kwargs):
    """
    DINOv2 ViT-S/14 model with registers (optionally) pretrained on the LVD-142M dataset.
    """
    return _make_dinov2_model(
        arch_name="vit_small",
        pretrained=pretrained,
        weights=weights,
        num_register_tokens=4,
        interpolate_antialias=True,
        interpolate_offset=0.0,
        **kwargs,
    )


def dinov2_vitb14_reg(*, pretrained: bool = True, weights: Union[Weights, str] = Weights.LVD142M, **kwargs):
    """
    DINOv2 ViT-B/14 model with registers (optionally) pretrained on the LVD-142M dataset.
    """
    return _make_dinov2_model(
        arch_name="vit_base",
        pretrained=pretrained,
        weights=weights,
        num_register_tokens=4,
        interpolate_antialias=True,
        interpolate_offset=0.0,
        **kwargs,
    )


def dinov2_vitl14_reg(*, pretrained: bool = True, weights: Union[Weights, str] = Weights.LVD142M, **kwargs):
    """
    DINOv2 ViT-L/14 model with registers (optionally) pretrained on the LVD-142M dataset.
    """
    return _make_dinov2_model(
        arch_name="vit_large",
        pretrained=pretrained,
        weights=weights,
        num_register_tokens=4,
        interpolate_antialias=True,
        interpolate_offset=0.0,
        **kwargs,
    )


def dinov2_vitg14_reg(*, pretrained: bool = True, weights: Union[Weights, str] = Weights.LVD142M, **kwargs):
    """
    DINOv2 ViT-g/14 model with registers (optionally) pretrained on the LVD-142M dataset.
    """
    return _make_dinov2_model(
        arch_name="vit_giant2",
        ffn_layer="swiglufused",
        weights=weights,
        pretrained=pretrained,
        num_register_tokens=4,
        interpolate_antialias=True,
        interpolate_offset=0.0,
        **kwargs,
    )