File size: 9,675 Bytes
141f1e8
ae88fe1
 
141f1e8
ae88fe1
 
98844c3
ae88fe1
141f1e8
 
98844c3
141f1e8
 
 
 
ae88fe1
 
 
141f1e8
 
 
ae88fe1
439c90f
ae88fe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141f1e8
98844c3
ae88fe1
141f1e8
 
 
 
 
 
 
 
 
 
 
ae88fe1
141f1e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce8dcd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141f1e8
 
 
 
 
 
 
 
ae88fe1
 
141f1e8
ae88fe1
 
141f1e8
 
 
ae88fe1
141f1e8
 
 
ae88fe1
141f1e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a6f746
 
141f1e8
 
4a6f746
2bd474b
141f1e8
 
 
 
ce8dcd4
141f1e8
 
439c90f
 
 
141f1e8
439c90f
 
 
 
141f1e8
439c90f
 
 
 
 
 
 
 
 
 
 
 
141f1e8
439c90f
 
 
 
 
 
 
 
 
 
 
 
141f1e8
439c90f
 
 
 
 
 
 
 
 
 
 
 
 
ce8dcd4
439c90f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141f1e8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import os
import time
import shutil
from pathlib import Path
from typing import Union
import atexit
import spaces
from concurrent.futures import ThreadPoolExecutor
import trimesh

import gradio as gr
from gradio_imageslider import ImageSlider
import cv2
import numpy as np
import imageio
from promptda.promptda import PromptDA
from promptda.utils.io_wrapper import load_image, load_depth
from promptda.utils.depth_utils import visualize_depth, unproject_depth
DEVICE = 'cuda' 
# if torch.cuda.is_available(
# ) else 'mps' if torch.backends.mps.is_available() else 'cpu'
model = PromptDA.from_pretrained('depth-anything/promptda_vitl').to(DEVICE).eval()
# model = PromptDA.from_pretrained('depth-anything/promptda_vitl').eval()
thread_pool_executor = ThreadPoolExecutor(max_workers=1)

def delete_later(path: Union[str, os.PathLike], delay: int = 300):
    print(f"Deleting file: {path}")
    def _delete():
        try: 
            if os.path.isfile(path):
                os.remove(path) 
                print(f"Deleted file: {path}")
            elif os.path.isdir(path):
                shutil.rmtree(path)
                print(f"Deleted directory: {path}")
        except: 
            pass
    def _wait_and_delete():
        time.sleep(delay)
        _delete(path)
    thread_pool_executor.submit(_wait_and_delete)
    atexit.register(_delete)


@spaces.GPU
def run_with_gpu(image, prompt_depth):
    image = image.to(DEVICE)
    prompt_depth = prompt_depth.to(DEVICE)
    depth = model.predict(image, prompt_depth)
    depth = depth[0, 0].detach().cpu().numpy()
    return depth

def check_is_stray_scanner_app_capture(input_dir):
    assert os.path.exists(os.path.join(input_dir, 'rgb.mp4')), 'rgb.mp4 not found'
    pass

# @spaces.GPU
def run(input_file, resolution):
    # unzip zip file
    input_file = input_file.name
    root_dir = os.path.dirname(input_file)
    scene_name = input_file.split('/')[-1].split('.')[0]
    input_dir = os.path.join(root_dir, scene_name)
    cmd = f'unzip -o {input_file} -d {root_dir}'
    os.system(cmd)
    check_is_stray_scanner_app_capture(input_dir)

    # extract rgb images
    os.makedirs(os.path.join(input_dir, 'rgb'), exist_ok=True)
    cmd = f'ffmpeg -i {input_dir}/rgb.mp4 -start_number 0 -frames:v 10 -q:v 2 {input_dir}/rgb/%06d.jpg'
    os.system(cmd)

    # Loading & Inference
    image_path = os.path.join(input_dir, 'rgb', '000000.jpg')
    image = load_image(image_path)
    prompt_depth_path = os.path.join(input_dir, 'depth/000000.png')
    prompt_depth = load_depth(prompt_depth_path)
    depth = run_with_gpu(image, prompt_depth)


    color = (image[0].permute(1,2,0).cpu().numpy() * 255.).astype(np.uint8)

    # Visualization file
    vis_depth, depth_min, depth_max = visualize_depth(depth, ret_minmax=True)
    vis_prompt_depth = visualize_depth(prompt_depth[0, 0].detach().cpu().numpy(), depth_min=depth_min, depth_max=depth_max)
    vis_prompt_depth = cv2.resize(vis_prompt_depth, (vis_depth.shape[1], vis_depth.shape[0]), interpolation=cv2.INTER_NEAREST)
    # Add text to vis_prompt_depth
    text_x = vis_prompt_depth.shape[1] - 250 + 15
    text_y = vis_prompt_depth.shape[0] - 45 + 27
    vis_prompt_depth = cv2.rectangle(vis_prompt_depth, 
                                     (vis_prompt_depth.shape[1] - 250, vis_prompt_depth.shape[0] - 45), 
                                     (vis_prompt_depth.shape[1] - 5, vis_prompt_depth.shape[0] - 5), 
                                     (70, 70, 70), -1)
    vis_prompt_depth = cv2.putText(vis_prompt_depth, 'Prompt depth', 
                                   (text_x, text_y), 
                                   cv2.FONT_HERSHEY_SIMPLEX, 
                                   1, (255, 255, 255), 2, cv2.LINE_AA)

    text_x = 5 + 15
    text_y = vis_depth.shape[0] - 45 + 27
    vis_depth = cv2.rectangle(vis_depth, 
                              (5, vis_depth.shape[0] - 45), 
                              (250, vis_depth.shape[0] - 5), 
                              (70, 70, 70), -1)
    vis_depth = cv2.putText(vis_depth, 'Output depth', 
                            (text_x, text_y), 
                            cv2.FONT_HERSHEY_SIMPLEX, 
                            1, (255, 255, 255), 2, cv2.LINE_AA)

    # PLY File
    ixt_path = os.path.join(input_dir, f'camera_matrix.csv')
    ixt = np.loadtxt(ixt_path, delimiter=',')
    orig_max = 1920
    now_max = max(color.shape[1], color.shape[0])
    scale = orig_max / now_max
    ixt[:2] = ixt[:2] / scale
    points, colors = unproject_depth(depth, ixt=ixt, color=color, ret_pcd=False)
    pcd = trimesh.PointCloud(vertices=points, colors=colors)
    ply_path = os.path.join(input_dir, f'pointcloud.ply')
    pcd.export(ply_path)
    # o3d.io.write_point_cloud(ply_path, pcd)

    glb_path = os.path.join(input_dir, f'pointcloud.glb')
    scene_3d = trimesh.Scene()
    glb_colors = np.asarray(colors).astype(np.float32)
    glb_colors = np.concatenate([glb_colors, np.ones_like(glb_colors[:, :1])], axis=1)
    # glb_colors = (np.asarray(pcd.colors) * 255).astype(np.uint8)
    pcd_data = trimesh.PointCloud(
        vertices=np.asarray(points) * np.array([[1, -1, -1]]),
        colors=glb_colors.astype(np.float64),
    )
    scene_3d.add_geometry(pcd_data)
    scene_3d.export(file_obj=glb_path)
    # o3d.io.write_point_cloud(glb_path, pcd)

    # Depth Map Original Value
    depth_path = os.path.join(input_dir, f'depth.png')
    output_depth = (depth * 1000).astype(np.uint16)
    imageio.imwrite(depth_path, output_depth)


    delete_later(Path(input_dir))
    delete_later(Path(input_file))

    return color, (vis_depth, vis_prompt_depth), Path(glb_path), Path(ply_path).as_posix(), Path(depth_path).as_posix()

DESCRIPTION = """
# Estimate accurate and high-resolution depth maps from your iPhone capture.

Project Page: [Prompt Depth Anything](https://promptda.github.io/)

## Requirements:
1. iPhone 12 Pro or later Pro models, iPad 2020 Pro or later Pro models.
2. Free iOS App: [Stray Scanner App](https://apps.apple.com/us/app/stray-scanner/id1557051662).

## Testing Steps:
1. Capture a scene with the Stray Scanner App. Use the iPhone [Files App](https://apps.apple.com/us/app/files/id1232058109) to compress it into a zip file and transfer it to your computer. [Example screen recording.](https://haotongl.github.io/promptda/assets/ScreenRecording_12-16-2024.mp4).
2. Upload the zip file and click "Submit" to get the depth map of the first frame.

Note:
- Currently, this demo only supports inference for the first frame. If you need to obtain all depth frames, please refer to our [GitHub repo](https://github.com/DepthAnything/PromptDA).
- The depth map is stored as uint16, with a unit of millimeters.
- **You can refer to the bottom of this page for an example demo.**
"""

def main():
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown(DESCRIPTION)

        with gr.Row():
            input_file = gr.File(type="filepath", label="Stray scanner app capture zip file")
            resolution = gr.Dropdown(choices=['756x1008', '1428x1904'], value='756x1008', label="Inference resolution")
            submit_btn = gr.Button("Submit")
        
        # gr.Examples(examples=[
        #         ["data/assets/example0_chair.zip", "756x1008"]
        #     ],
        #     inputs=[input_file, resolution],
        #     label="Examples",
        # ) 

        with gr.Row():
            with gr.Column():
                output_rgb = gr.Image(type="numpy", label="RGB Image")
            with gr.Column():
                output_depths = ImageSlider(label="Output depth / prompt depth", position=0.5)
        
        with gr.Row():
            with gr.Column():
                output_3d_model = gr.Model3D(label="3D Viewer", display_mode='solid', clear_color=[1.0, 1.0, 1.0, 1.0])
            with gr.Column():
                output_ply = gr.File(type="filepath", label="Download the unprojected point cloud as .ply file", height=30)
                output_depth_map = gr.File(type="filepath", label="Download the depth map as .png file", height=30)
        outputs = [
            output_rgb,
            output_depths,
            output_3d_model,
            output_ply,
            output_depth_map,
        ]
        gr.Examples(examples=[
                ["data/assets/example0_chair.zip", "756x1008"]
            ],
            fn=run,
            inputs=[input_file, resolution],
            outputs=outputs,
            label="Examples",
            cache_examples=True,
        ) 
        submit_btn.click(run, 
                         inputs=[input_file, resolution], 
                         outputs=outputs)

    demo.launch(share=True)
# def main():
#     gr.Interface(
#         fn=run,
#         inputs=[
#             gr.File(type="filepath", label="Stray scanner app capture zip file"),
#             gr.Dropdown(choices=['756x1008', '1428x1904'], value='756x1008', label="Inference resolution")
#         ],
#         outputs=[
#             gr.Image(type="numpy", label="RGB Image"),
#             ImageSlider(label="Depth map / prompt depth", position=0.5),
#             gr.Model3D(label="3D Viewer", display_mode='solid', clear_color=[1.0, 1.0, 1.0, 1.0]),
#             gr.File(type="filepath", label="Download the unprojected point cloud as .ply file"),
#             gr.File(type="filepath", label="Download the depth map as .png file"),
#         ],
#         title=None,
#         description=DESCRIPTION,
#         clear_btn=None,
#         allow_flagging="never",
#         theme=gr.themes.Soft(),
#         examples=[
#             ["data/assets/example0_chair.zip"]
#         ]
#     ).launch()
main()