PromptDA / app.py
haotongl
inital version
4a6f746
raw
history blame
8.46 kB
import os
import time
import shutil
from pathlib import Path
from typing import Union
import atexit
import spaces
from concurrent.futures import ThreadPoolExecutor
import trimesh
import gradio as gr
from gradio_imageslider import ImageSlider
import cv2
import numpy as np
import imageio
from promptda.promptda import PromptDA
from promptda.utils.io_wrapper import load_image, load_depth
from promptda.utils.depth_utils import visualize_depth, unproject_depth
DEVICE = 'cuda'
# if torch.cuda.is_available(
# ) else 'mps' if torch.backends.mps.is_available() else 'cpu'
model = PromptDA.from_pretrained('depth-anything/promptda_vitl').to(DEVICE).eval()
# model = PromptDA.from_pretrained('depth-anything/promptda_vitl').eval()
thread_pool_executor = ThreadPoolExecutor(max_workers=1)
def delete_later(path: Union[str, os.PathLike], delay: int = 300):
print(f"Deleting file: {path}")
def _delete():
try:
if os.path.isfile(path):
os.remove(path)
print(f"Deleted file: {path}")
elif os.path.isdir(path):
shutil.rmtree(path)
print(f"Deleted directory: {path}")
except:
pass
def _wait_and_delete():
time.sleep(delay)
_delete(path)
thread_pool_executor.submit(_wait_and_delete)
atexit.register(_delete)
@spaces.GPU
def run_with_gpu(image, prompt_depth):
image = image.to(DEVICE)
prompt_depth = prompt_depth.to(DEVICE)
depth = model.predict(image, prompt_depth)
depth = depth[0, 0].detach().cpu().numpy()
return depth
def check_is_stray_scanner_app_capture(input_dir):
assert os.path.exists(os.path.join(input_dir, 'rgb.mp4')), 'rgb.mp4 not found'
pass
# @spaces.GPU
def run(input_file, resolution):
# unzip zip file
input_file = input_file.name
root_dir = os.path.dirname(input_file)
scene_name = input_file.split('/')[-1].split('.')[0]
input_dir = os.path.join(root_dir, scene_name)
cmd = f'unzip -o {input_file} -d {root_dir}'
os.system(cmd)
check_is_stray_scanner_app_capture(input_dir)
# extract rgb images
os.makedirs(os.path.join(input_dir, 'rgb'), exist_ok=True)
cmd = f'ffmpeg -i {input_dir}/rgb.mp4 -start_number 0 -frames:v 10 -q:v 2 {input_dir}/rgb/%06d.jpg'
os.system(cmd)
# Loading & Inference
image_path = os.path.join(input_dir, 'rgb', '000000.jpg')
image = load_image(image_path)
prompt_depth_path = os.path.join(input_dir, 'depth/000000.png')
prompt_depth = load_depth(prompt_depth_path)
depth = run_with_gpu(image, prompt_depth)
color = (image[0].permute(1,2,0).cpu().numpy() * 255.).astype(np.uint8)
# Visualization file
vis_depth, depth_min, depth_max = visualize_depth(depth, ret_minmax=True)
vis_prompt_depth = visualize_depth(prompt_depth[0, 0].detach().cpu().numpy(), depth_min=depth_min, depth_max=depth_max)
vis_prompt_depth = cv2.resize(vis_prompt_depth, (vis_depth.shape[1], vis_depth.shape[0]), interpolation=cv2.INTER_NEAREST)
# PLY File
ixt_path = os.path.join(input_dir, f'camera_matrix.csv')
ixt = np.loadtxt(ixt_path, delimiter=',')
orig_max = 1920
now_max = max(color.shape[1], color.shape[0])
scale = orig_max / now_max
ixt[:2] = ixt[:2] / scale
points, colors = unproject_depth(depth, ixt=ixt, color=color, ret_pcd=False)
pcd = trimesh.PointCloud(vertices=points, colors=colors)
ply_path = os.path.join(input_dir, f'pointcloud.ply')
pcd.export(ply_path)
# o3d.io.write_point_cloud(ply_path, pcd)
glb_path = os.path.join(input_dir, f'pointcloud.glb')
scene_3d = trimesh.Scene()
glb_colors = np.asarray(colors).astype(np.float32)
glb_colors = np.concatenate([glb_colors, np.ones_like(glb_colors[:, :1])], axis=1)
# glb_colors = (np.asarray(pcd.colors) * 255).astype(np.uint8)
pcd_data = trimesh.PointCloud(
vertices=np.asarray(points) * np.array([[1, -1, -1]]),
colors=glb_colors.astype(np.float64),
)
scene_3d.add_geometry(pcd_data)
scene_3d.export(file_obj=glb_path)
# o3d.io.write_point_cloud(glb_path, pcd)
# Depth Map Original Value
depth_path = os.path.join(input_dir, f'depth.png')
output_depth = (depth * 1000).astype(np.uint16)
imageio.imwrite(depth_path, output_depth)
delete_later(Path(input_dir))
delete_later(Path(input_file))
return color, (vis_depth, vis_prompt_depth), Path(glb_path), Path(ply_path).as_posix(), Path(depth_path).as_posix()
DESCRIPTION = """
# Estimate accurate and high-resolution depth maps from your iPhone capture.
Project Page: [Prompt Depth Anything](https://promptda.github.io/)
## Requirements:
1. iPhone 12 Pro or later Pro models, iPad 2020 Pro or later Pro models.
2. Free iOS App: [Stray Scanner App](https://apps.apple.com/us/app/stray-scanner/id1557051662).
## Testing Steps:
1. Capture a scene with the Stray Scanner App. Use the iPhone [Files App](https://apps.apple.com/us/app/files/id1232058109) to compress it into a zip file and transfer it to your computer. [Example screen recording.](https://haotongl.github.io/promptda/assets/ScreenRecording_12-16-2024.mp4).
2. Upload the zip file and click "Submit" to get the depth map of the first frame.
Note:
- Currently, this demo only supports inference for the first frame. If you need to obtain all depth frames, please refer to our [GitHub repo](https://github.com/DepthAnything/PromptDA).
- The depth map is stored as uint16, with a unit of millimeters.
- **You can refer to the bottom of this page for a example demo.**
"""
def main():
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
input_file = gr.File(type="filepath", label="Stray scanner app capture zip file")
resolution = gr.Dropdown(choices=['756x1008', '1428x1904'], value='756x1008', label="Inference resolution")
submit_btn = gr.Button("Submit")
# gr.Examples(examples=[
# ["data/assets/example0_chair.zip", "756x1008"]
# ],
# inputs=[input_file, resolution],
# label="Examples",
# )
with gr.Row():
with gr.Column():
output_rgb = gr.Image(type="numpy", label="RGB Image")
with gr.Column():
output_depths = ImageSlider(label="Output depth / prompt depth", position=0.5)
with gr.Row():
with gr.Column():
output_3d_model = gr.Model3D(label="3D Viewer", display_mode='solid', clear_color=[1.0, 1.0, 1.0, 1.0])
with gr.Column():
output_ply = gr.File(type="filepath", label="Download the unprojected point cloud as .ply file", height=30)
output_depth_map = gr.File(type="filepath", label="Download the depth map as .png file", height=30)
outputs = [
output_rgb,
output_depths,
output_3d_model,
output_ply,
output_depth_map,
]
gr.Examples(examples=[
["data/assets/example0_chair.zip", "756x1008"]
],
fn=run,
inputs=[input_file, resolution],
outputs=outputs,
label="Examples",
cache_examples=True,
)
submit_btn.click(run,
inputs=[input_file, resolution],
outputs=outputs)
demo.launch()
# def main():
# gr.Interface(
# fn=run,
# inputs=[
# gr.File(type="filepath", label="Stray scanner app capture zip file"),
# gr.Dropdown(choices=['756x1008', '1428x1904'], value='756x1008', label="Inference resolution")
# ],
# outputs=[
# gr.Image(type="numpy", label="RGB Image"),
# ImageSlider(label="Depth map / prompt depth", position=0.5),
# gr.Model3D(label="3D Viewer", display_mode='solid', clear_color=[1.0, 1.0, 1.0, 1.0]),
# gr.File(type="filepath", label="Download the unprojected point cloud as .ply file"),
# gr.File(type="filepath", label="Download the depth map as .png file"),
# ],
# title=None,
# description=DESCRIPTION,
# clear_btn=None,
# allow_flagging="never",
# theme=gr.themes.Soft(),
# examples=[
# ["data/assets/example0_chair.zip"]
# ]
# ).launch()
main()