Spaces:
Running
on
Zero
Running
on
Zero
haotongl
commited on
Commit
·
94c12b7
1
Parent(s):
dd53be2
inital version
Browse files- app.py +17 -16
- promptda/utils/io_wrapper.py +3 -3
app.py
CHANGED
@@ -45,6 +45,8 @@ def delete_later(path: Union[str, os.PathLike], delay: int = 300):
|
|
45 |
|
46 |
@spaces.GPU
|
47 |
def run_with_gpu(image, prompt_depth):
|
|
|
|
|
48 |
depth = model.predict(image, prompt_depth)
|
49 |
depth = depth[0, 0].detach().cpu().numpy()
|
50 |
return depth
|
@@ -121,6 +123,8 @@ def run(input_file, resolution):
|
|
121 |
DESCRIPTION = """
|
122 |
# Estimate accurate and high-resolution depth maps from your iPhone capture.
|
123 |
|
|
|
|
|
124 |
## Requirements:
|
125 |
1. iPhone 12 Pro or later Pro models, iPad 2020 Pro or later Pro models
|
126 |
2. Free iOS App: [Stray Scanner App](https://apps.apple.com/us/app/stray-scanner/id1557051662)
|
@@ -140,35 +144,24 @@ Note:
|
|
140 |
def main(share: bool):
|
141 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
142 |
gr.Markdown(DESCRIPTION)
|
143 |
-
|
144 |
-
|
145 |
|
146 |
with gr.Row():
|
147 |
-
input_file = gr.File(type="filepath", label="
|
148 |
resolution = gr.Dropdown(choices=['756x1008', '1428x1904'], value='756x1008', label="Inference resolution")
|
149 |
submit_btn = gr.Button("Submit")
|
150 |
|
151 |
-
gr.Examples(examples=[
|
152 |
-
["data/assets/example0_chair.zip", "756x1008"]
|
153 |
-
],
|
154 |
-
inputs=[input_file, resolution],
|
155 |
-
# outputs=[output_rgb, output_depths, output_3d_model, output_ply, output_depth_map],
|
156 |
-
label="Examples",
|
157 |
-
)
|
158 |
-
|
159 |
with gr.Row():
|
160 |
with gr.Column():
|
161 |
output_rgb = gr.Image(type="numpy", label="RGB Image")
|
162 |
with gr.Column():
|
163 |
-
output_depths = ImageSlider(label="
|
164 |
|
165 |
with gr.Row():
|
166 |
with gr.Column():
|
167 |
output_3d_model = gr.Model3D(label="3D Viewer", display_mode='solid', clear_color=[1.0, 1.0, 1.0, 1.0])
|
168 |
with gr.Column():
|
169 |
-
output_ply = gr.File(type="filepath", label="Download the unprojected point cloud as .ply file")
|
170 |
-
output_depth_map = gr.File(type="filepath", label="Download the depth map as .png file")
|
171 |
-
|
172 |
outputs = [
|
173 |
output_rgb,
|
174 |
output_depths,
|
@@ -176,7 +169,15 @@ def main(share: bool):
|
|
176 |
output_ply,
|
177 |
output_depth_map,
|
178 |
]
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
submit_btn.click(run,
|
181 |
inputs=[input_file, resolution],
|
182 |
outputs=outputs)
|
|
|
45 |
|
46 |
@spaces.GPU
|
47 |
def run_with_gpu(image, prompt_depth):
|
48 |
+
image = image.to(DEVICE)
|
49 |
+
prompt_depth = prompt_depth.to(DEVICE)
|
50 |
depth = model.predict(image, prompt_depth)
|
51 |
depth = depth[0, 0].detach().cpu().numpy()
|
52 |
return depth
|
|
|
123 |
DESCRIPTION = """
|
124 |
# Estimate accurate and high-resolution depth maps from your iPhone capture.
|
125 |
|
126 |
+
Project Page: [Prompt Depth Anything](https://promptda.github.io/)
|
127 |
+
|
128 |
## Requirements:
|
129 |
1. iPhone 12 Pro or later Pro models, iPad 2020 Pro or later Pro models
|
130 |
2. Free iOS App: [Stray Scanner App](https://apps.apple.com/us/app/stray-scanner/id1557051662)
|
|
|
144 |
def main(share: bool):
|
145 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
146 |
gr.Markdown(DESCRIPTION)
|
|
|
|
|
147 |
|
148 |
with gr.Row():
|
149 |
+
input_file = gr.File(type="filepath", label="Stray scanner app capture zip file")
|
150 |
resolution = gr.Dropdown(choices=['756x1008', '1428x1904'], value='756x1008', label="Inference resolution")
|
151 |
submit_btn = gr.Button("Submit")
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
with gr.Row():
|
154 |
with gr.Column():
|
155 |
output_rgb = gr.Image(type="numpy", label="RGB Image")
|
156 |
with gr.Column():
|
157 |
+
output_depths = ImageSlider(label="Output depth / prompt depth", position=0.5)
|
158 |
|
159 |
with gr.Row():
|
160 |
with gr.Column():
|
161 |
output_3d_model = gr.Model3D(label="3D Viewer", display_mode='solid', clear_color=[1.0, 1.0, 1.0, 1.0])
|
162 |
with gr.Column():
|
163 |
+
output_ply = gr.File(type="filepath", label="Download the unprojected point cloud as .ply file", height=30)
|
164 |
+
output_depth_map = gr.File(type="filepath", label="Download the depth map as .png file", height=30)
|
|
|
165 |
outputs = [
|
166 |
output_rgb,
|
167 |
output_depths,
|
|
|
169 |
output_ply,
|
170 |
output_depth_map,
|
171 |
]
|
172 |
+
gr.Examples(examples=[
|
173 |
+
["data/assets/example0_chair.zip", "756x1008"]
|
174 |
+
],
|
175 |
+
fn=run,
|
176 |
+
inputs=[input_file, resolution],
|
177 |
+
outputs=outputs,
|
178 |
+
label="Examples",
|
179 |
+
cache_examples=True,
|
180 |
+
)
|
181 |
submit_btn.click(run,
|
182 |
inputs=[input_file, resolution],
|
183 |
outputs=outputs)
|
promptda/utils/io_wrapper.py
CHANGED
@@ -7,14 +7,14 @@ import cv2
|
|
7 |
|
8 |
from promptda.utils.logger import Log
|
9 |
|
10 |
-
DEVICE = 'cuda' if torch.cuda.is_available(
|
11 |
-
) else 'mps' if torch.backends.mps.is_available() else 'cpu'
|
12 |
|
13 |
|
14 |
def to_tensor_func(arr):
|
15 |
if arr.ndim == 2:
|
16 |
arr = arr[:, :, np.newaxis]
|
17 |
-
return torch.from_numpy(arr).permute(2, 0, 1).unsqueeze(0)
|
18 |
|
19 |
|
20 |
def to_numpy_func(tensor):
|
|
|
7 |
|
8 |
from promptda.utils.logger import Log
|
9 |
|
10 |
+
# DEVICE = 'cuda' if torch.cuda.is_available(
|
11 |
+
# ) else 'mps' if torch.backends.mps.is_available() else 'cpu'
|
12 |
|
13 |
|
14 |
def to_tensor_func(arr):
|
15 |
if arr.ndim == 2:
|
16 |
arr = arr[:, :, np.newaxis]
|
17 |
+
return torch.from_numpy(arr).permute(2, 0, 1).unsqueeze(0)
|
18 |
|
19 |
|
20 |
def to_numpy_func(tensor):
|