Spaces:
Runtime error
Runtime error
Commit
Β·
74ce942
1
Parent(s):
d23c925
Init commit
Browse files- .gitattributes +2 -0
- .gitignore +3 -0
- README.md +1 -1
- app/Top2Vec.py +26 -0
- app/pages/01_Topic_Explorer_π.py +55 -0
- app/pages/02_Document_Explorer_π.py +119 -0
- app/pages/03_Semantic_Search_π.py +112 -0
- bootstrap.py +12 -0
- notebooks/explore.ipynb +0 -0
- requirements.txt +9 -0
.gitattributes
CHANGED
@@ -3,6 +3,7 @@
|
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
|
|
6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
@@ -23,6 +24,7 @@
|
|
23 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
|
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
|
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.csv filter=lfs diff=lfs merge=lfs -text
|
7 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
9 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
|
|
24 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
25 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
26 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.sav filter=lfs diff=lfs merge=lfs -text
|
28 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
30 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
*.pyc
|
2 |
+
vscode
|
3 |
+
notebooks/.ipynb_checkpoints
|
README.md
CHANGED
@@ -5,7 +5,7 @@ colorFrom: pink
|
|
5 |
colorTo: blue
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.17.0
|
8 |
-
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
|
|
5 |
colorTo: blue
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.17.0
|
8 |
+
app_file: app/Top2Vec.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
app/Top2Vec.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
st.set_page_config(page_title="Top2Vec", layout="wide")
|
4 |
+
|
5 |
+
st.markdown(
|
6 |
+
"""
|
7 |
+
# Introduction
|
8 |
+
This is [space](https://huggingface.co/spaces) dedicated to using [top2vec](https://github.com/ddangelov/Top2Vec) and showing what features are available for semantic searching and topic modeling.
|
9 |
+
Please check out this [readme](https://github.com/ddangelov/Top2Vec#how-does-it-work) to better understand how it works.
|
10 |
+
|
11 |
+
> Top2Vec is an algorithm for **topic modeling** and **semantic search**. It automatically detects topics present in text and generates jointly embedded topic, document and word vectors.
|
12 |
+
|
13 |
+
|
14 |
+
# Setup
|
15 |
+
I used the [20 NewsGroups](https://huggingface.co/datasets/SetFit/20_newsgroups) dataset with `top2vec`.
|
16 |
+
I fit on the dataset and reduced the topics to 20.
|
17 |
+
The topics are created from top2vec, not the labels.
|
18 |
+
No analysis on the top 20 topics vs labels is provided.
|
19 |
+
|
20 |
+
# Usage
|
21 |
+
Check out
|
22 |
+
- The [Topic Explorer](/Topic_Explorer) page to understand what topic were detected
|
23 |
+
- The [Document Explorer](/Document_Explorer) page to visually explore documents
|
24 |
+
- The [Semantic Search](/Semantic_Search) page to search by meaning
|
25 |
+
"""
|
26 |
+
)
|
app/pages/01_Topic_Explorer_π.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from logging import getLogger
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
import plotly.express as px
|
6 |
+
import plotly.graph_objects as go
|
7 |
+
import streamlit as st
|
8 |
+
|
9 |
+
from top2vec import Top2Vec
|
10 |
+
|
11 |
+
|
12 |
+
def initialize_state():
|
13 |
+
with st.spinner('Loading App...'):
|
14 |
+
if 'model' not in st.session_state:
|
15 |
+
model = Top2Vec.load('models/model.pkl')
|
16 |
+
model._check_model_status()
|
17 |
+
model.hierarchical_topic_reduction(num_topics=20)
|
18 |
+
assert len(model.topic_words_reduced) == 20
|
19 |
+
st.session_state.model = model
|
20 |
+
|
21 |
+
def main():
|
22 |
+
st.write("""
|
23 |
+
A way to dive into each topic. Use the slider on the left to choose the topic.
|
24 |
+
|
25 |
+
The `y` axis shows which words are closest to a topic centroid. The `x` axis shows how correlated they are.""")
|
26 |
+
|
27 |
+
topic_num = st.sidebar.slider("Topic Number", 0, 19, value=0)
|
28 |
+
fig = go.Figure(go.Bar(
|
29 |
+
x=st.session_state.model.topic_word_scores_reduced[topic_num][::-1],
|
30 |
+
y=st.session_state.model.topic_words_reduced[topic_num][::-1],
|
31 |
+
orientation='h'))
|
32 |
+
fig.update_layout(
|
33 |
+
title=f'Words for Topic {topic_num}',
|
34 |
+
yaxis_title='Top 20 topic words',
|
35 |
+
xaxis_title='Distance to topic centroid'
|
36 |
+
)
|
37 |
+
|
38 |
+
st.plotly_chart(fig, True)
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
# Setting up Logger and proj_dir
|
42 |
+
logger = getLogger(__name__)
|
43 |
+
proj_dir = Path(__file__).parents[2]
|
44 |
+
|
45 |
+
# For max width tables
|
46 |
+
pd.set_option('display.max_colwidth', 0)
|
47 |
+
|
48 |
+
# Streamlit settings
|
49 |
+
st.set_page_config(layout="wide")
|
50 |
+
md_title = "# Topic Explorer π"
|
51 |
+
st.markdown(md_title)
|
52 |
+
st.sidebar.markdown(md_title)
|
53 |
+
|
54 |
+
initialize_state()
|
55 |
+
main()
|
app/pages/02_Document_Explorer_π.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from distutils.fancy_getopt import wrap_text
|
2 |
+
from logging import getLogger
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import pandas as pd
|
6 |
+
import plotly.express as px
|
7 |
+
import plotly.graph_objects as go
|
8 |
+
import streamlit as st
|
9 |
+
from st_aggrid import AgGrid, ColumnsAutoSizeMode, GridOptionsBuilder
|
10 |
+
from streamlit_plotly_events import plotly_events
|
11 |
+
|
12 |
+
from top2vec import Top2Vec
|
13 |
+
|
14 |
+
|
15 |
+
def initialize_state():
|
16 |
+
if 'data' not in st.session_state:
|
17 |
+
logger.info("loading data...")
|
18 |
+
data = pd.read_csv(proj_dir/'data'/'data.csv')
|
19 |
+
data['topic_id'] = data['topic_id'].apply(lambda x: f'{x:02d}')
|
20 |
+
st.session_state.data = data
|
21 |
+
st.session_state.selected_data = data
|
22 |
+
st.session_state.all_topics = list(data.topic_id.unique())
|
23 |
+
|
24 |
+
if 'topics' not in st.session_state:
|
25 |
+
logger.info("loading topics...")
|
26 |
+
topics = pd.read_csv(proj_dir/'data'/'topics.csv')
|
27 |
+
topics['topic_id'] = topics['topic_id'].apply(lambda x: f'{x:02d}')
|
28 |
+
st.session_state.topics = topics
|
29 |
+
|
30 |
+
st.session_state.selected_points = []
|
31 |
+
|
32 |
+
def reset():
|
33 |
+
logger.info("Resetting...")
|
34 |
+
st.session_state.selected_data = st.session_state.data
|
35 |
+
st.session_state.selected_points = []
|
36 |
+
|
37 |
+
|
38 |
+
def filter_df():
|
39 |
+
if st.session_state.selected_points:
|
40 |
+
points_df = pd.DataFrame(st.session_state.selected_points).loc[:, ['x', 'y']]
|
41 |
+
st.session_state.selected_data = st.session_state.data.merge(points_df, on=['x', 'y'])
|
42 |
+
logger.info(f"Updates selected_data: {len(st.session_state.selected_data)}")
|
43 |
+
else:
|
44 |
+
logger.info(f"Lame")
|
45 |
+
|
46 |
+
|
47 |
+
def reset():
|
48 |
+
st.session_state.selected_data = st.session_state.data
|
49 |
+
st.session_state.selected_points = []
|
50 |
+
|
51 |
+
|
52 |
+
def main():
|
53 |
+
st.write("""
|
54 |
+
# Topic Modeling
|
55 |
+
This shows a 2d representation of documents embeded in a semantic space. Each dot is a document
|
56 |
+
and the dots close represent documents that are close in meaning.
|
57 |
+
|
58 |
+
Zoom in and explore a topic of your choice. You can see the documents you select with the `lasso` or `box`
|
59 |
+
tool below in the corresponding tabs."""
|
60 |
+
)
|
61 |
+
|
62 |
+
st.button("Reset", help="Will Reset the selected points and the selected topics", on_click=reset)
|
63 |
+
data_to_model = st.session_state.data.sort_values(by='topic_id', ascending=True) # to make legend sorted https://bioinformatics.stackexchange.com/a/18847
|
64 |
+
fig = px.scatter(data_to_model, x='x', y='y', color='topic_id', template='plotly_dark', hover_data=['id', 'topic_id', 'x', 'y'])
|
65 |
+
st.session_state.selected_points = plotly_events(fig, select_event=True, click_event=False)
|
66 |
+
filter_df()
|
67 |
+
|
68 |
+
tab1, tab2 = st.tabs(["Docs", "Topics"])
|
69 |
+
|
70 |
+
with tab1:
|
71 |
+
if st.session_state.selected_points:
|
72 |
+
filter_df()
|
73 |
+
cols = ['id', 'topic_id', 'documents']
|
74 |
+
data = st.session_state.selected_data[cols]
|
75 |
+
builder = GridOptionsBuilder.from_dataframe(data)
|
76 |
+
builder.configure_pagination()
|
77 |
+
go = builder.build()
|
78 |
+
AgGrid(st.session_state.selected_data[cols], theme='streamlit', gridOptions=go, columns_auto_size_mode=ColumnsAutoSizeMode.FIT_CONTENTS)
|
79 |
+
else:
|
80 |
+
st.markdown('Select points in the graph with the `lasso` or `box` select tools to populate this table.')
|
81 |
+
|
82 |
+
def get_topics_counts() -> pd.DataFrame:
|
83 |
+
topic_counts = st.session_state.selected_data["topic_id"].value_counts().to_frame()
|
84 |
+
merged = topic_counts.merge(st.session_state.topics, left_index=True, right_on='topic_id')
|
85 |
+
cleaned = merged.drop(['topic_id_y'], axis=1).rename({'topic_id_x':'topic_count'}, axis=1)
|
86 |
+
cols = ['topic_id'] + [col for col in cleaned.columns if col != 'topic_id']
|
87 |
+
return cleaned[cols]
|
88 |
+
|
89 |
+
|
90 |
+
with tab2:
|
91 |
+
if st.session_state.selected_points:
|
92 |
+
filter_df()
|
93 |
+
cols = ['topic_id', 'topic_count', 'topic_0']
|
94 |
+
topic_counts = get_topics_counts()
|
95 |
+
# st.write(topic_counts.columns)
|
96 |
+
builder = GridOptionsBuilder.from_dataframe(topic_counts[cols])
|
97 |
+
builder.configure_pagination()
|
98 |
+
builder.configure_column('topic_0', header_name='Topic Word', wrap_text=True)
|
99 |
+
go = builder.build()
|
100 |
+
AgGrid(topic_counts.loc[:,cols], theme='streamlit', gridOptions=go, columns_auto_size_mode=ColumnsAutoSizeMode.FIT_ALL_COLUMNS_TO_VIEW)
|
101 |
+
else:
|
102 |
+
st.markdown('Select points in the graph with the `lasso` or `box` select tools to populate this table.')
|
103 |
+
|
104 |
+
if __name__ == "__main__":
|
105 |
+
# Setting up Logger and proj_dir
|
106 |
+
logger = getLogger(__name__)
|
107 |
+
proj_dir = Path(__file__).parents[2]
|
108 |
+
|
109 |
+
# For max width tables
|
110 |
+
pd.set_option('display.max_colwidth', 0)
|
111 |
+
|
112 |
+
# Streamlit settings
|
113 |
+
st.set_page_config(layout="wide")
|
114 |
+
md_title = "# Document Explorer π"
|
115 |
+
st.markdown(md_title)
|
116 |
+
st.sidebar.markdown(md_title)
|
117 |
+
|
118 |
+
initialize_state()
|
119 |
+
main()
|
app/pages/03_Semantic_Search_π.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from distutils.fancy_getopt import wrap_text
|
2 |
+
from top2vec import Top2Vec
|
3 |
+
import joblib
|
4 |
+
import streamlit as st
|
5 |
+
import pandas as pd
|
6 |
+
from pathlib import Path
|
7 |
+
import plotly.express as px
|
8 |
+
import plotly.graph_objects as go
|
9 |
+
from streamlit_plotly_events import plotly_events
|
10 |
+
from st_aggrid import AgGrid, GridOptionsBuilder, ColumnsAutoSizeMode
|
11 |
+
from logging import getLogger
|
12 |
+
|
13 |
+
|
14 |
+
@st.cache(show_spinner=False)
|
15 |
+
def initialize_state():
|
16 |
+
with st.spinner("Loading app..."):
|
17 |
+
if 'model' not in st.session_state:
|
18 |
+
model = Top2Vec.load('models/model.pkl')
|
19 |
+
model._check_model_status()
|
20 |
+
st.session_state.model = model
|
21 |
+
st.session_state.umap_model = joblib.load(proj_dir / 'models' / 'umap.sav')
|
22 |
+
logger.info("loading data...")
|
23 |
+
|
24 |
+
data = pd.read_csv(proj_dir/'data'/'data.csv')
|
25 |
+
data['topic_id'] = data['topic_id'].apply(lambda x: f'{x:02d}')
|
26 |
+
st.session_state.data = data
|
27 |
+
|
28 |
+
topics = pd.read_csv(proj_dir/'data'/'topics.csv')
|
29 |
+
topics['topic_id'] = topics['topic_id'].apply(lambda x: f'{x:02d}')
|
30 |
+
|
31 |
+
st.session_state.topics = topics
|
32 |
+
|
33 |
+
def main():
|
34 |
+
|
35 |
+
max_docs = st.sidebar.slider("# docs", 10, 100, value=50)
|
36 |
+
to_search = st.text_input("Write your query here", "") or ""
|
37 |
+
with st.spinner('Embedding Query...'):
|
38 |
+
vector = st.session_state.model.embed([to_search])
|
39 |
+
with st.spinner('Dimension Reduction...'):
|
40 |
+
point = st.session_state.umap_model.transform(vector.reshape(1, -1))
|
41 |
+
|
42 |
+
documents, document_scores, document_ids = st.session_state.model.search_documents_by_vector(vector.flatten(), num_docs=max_docs)
|
43 |
+
st.session_state.search_raw_df = pd.DataFrame({'document_ids':document_ids, 'document_scores':document_scores})
|
44 |
+
|
45 |
+
st.session_state.data_to_model = st.session_state.data.merge(st.session_state.search_raw_df, left_on='id', right_on='document_ids').drop(['document_ids'], axis=1)
|
46 |
+
st.session_state.data_to_model = st.session_state.data_to_model.sort_values(by='document_scores', ascending=False) # to make legend sorted https://bioinformatics.stackexchange.com/a/18847
|
47 |
+
st.session_state.data_to_model.loc[len(st.session_state.data_to_model.index)] = ['Point', *point[0].tolist(), to_search, 'Query', 0]
|
48 |
+
st.session_state.data_to_model_with_point = st.session_state.data_to_model
|
49 |
+
st.session_state.data_to_model_without_point = st.session_state.data_to_model.iloc[:-1]
|
50 |
+
|
51 |
+
def get_topics_counts() -> pd.DataFrame:
|
52 |
+
topic_counts = st.session_state.data_to_model_without_point["topic_id"].value_counts().to_frame()
|
53 |
+
merged = topic_counts.merge(st.session_state.topics, left_index=True, right_on='topic_id')
|
54 |
+
cleaned = merged.drop(['topic_id_y'], axis=1).rename({'topic_id_x':'topic_count'}, axis=1)
|
55 |
+
cols = ['topic_id'] + [col for col in cleaned.columns if col != 'topic_id']
|
56 |
+
return cleaned[cols]
|
57 |
+
|
58 |
+
st.write("""
|
59 |
+
# Semantic Search
|
60 |
+
This shows a 2d representation of documents embeded in a semantic space. Each dot is a document
|
61 |
+
and the dots close represent documents that are close in meaning.
|
62 |
+
|
63 |
+
Note that the distance metrics were computed at a higher dimension so take the representation with
|
64 |
+
a grain of salt.
|
65 |
+
|
66 |
+
The Query is shown with the documents in yellow.
|
67 |
+
"""
|
68 |
+
)
|
69 |
+
|
70 |
+
|
71 |
+
df = st.session_state.data_to_model_with_point.sort_values(by='topic_id', ascending=True)
|
72 |
+
fig = px.scatter(df.iloc[:-1], x='x', y='y', color='topic_id', template='plotly_dark', hover_data=['id', 'topic_id', 'x', 'y'])
|
73 |
+
fig.add_traces(px.scatter(df.tail(1), x="x", y="y").update_traces(marker_size=10, marker_color="yellow").data)
|
74 |
+
st.plotly_chart(fig, use_container_width=True)
|
75 |
+
tab1, tab2 = st.tabs(["Docs", "Topics"])
|
76 |
+
|
77 |
+
|
78 |
+
with tab1:
|
79 |
+
cols = ['id', 'document_scores', 'topic_id', 'documents']
|
80 |
+
builder = GridOptionsBuilder.from_dataframe(st.session_state.data_to_model_without_point.loc[:, cols])
|
81 |
+
builder.configure_pagination()
|
82 |
+
builder.configure_column('document_scores', type=["numericColumn","numberColumnFilter","customNumericFormat"], precision=2)
|
83 |
+
go = builder.build()
|
84 |
+
AgGrid(st.session_state.data_to_model_without_point.loc[:,cols], theme='streamlit', gridOptions=go, columns_auto_size_mode=ColumnsAutoSizeMode.FIT_CONTENTS)
|
85 |
+
|
86 |
+
|
87 |
+
with tab2:
|
88 |
+
cols = ['topic_id', 'topic_count', 'topic_0']
|
89 |
+
topic_counts = get_topics_counts()
|
90 |
+
builder = GridOptionsBuilder.from_dataframe(topic_counts[cols])
|
91 |
+
builder.configure_pagination()
|
92 |
+
builder.configure_column('topic_0', header_name='Topic Word', wrap_text=True)
|
93 |
+
go = builder.build()
|
94 |
+
AgGrid(topic_counts.loc[:,cols], theme='streamlit', gridOptions=go, columns_auto_size_mode=ColumnsAutoSizeMode.FIT_ALL_COLUMNS_TO_VIEW)
|
95 |
+
|
96 |
+
|
97 |
+
if __name__ == "__main__":
|
98 |
+
# Setting up Logger and proj_dir
|
99 |
+
logger = getLogger(__name__)
|
100 |
+
proj_dir = Path(__file__).parents[2]
|
101 |
+
|
102 |
+
# For max width tables
|
103 |
+
pd.set_option('display.max_colwidth', 0)
|
104 |
+
|
105 |
+
# Streamlit settings
|
106 |
+
st.set_page_config(layout="wide")
|
107 |
+
md_title = "# Semantic Search π"
|
108 |
+
st.markdown(md_title)
|
109 |
+
st.sidebar.markdown(md_title)
|
110 |
+
|
111 |
+
initialize_state()
|
112 |
+
main()
|
bootstrap.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
import streamlit.web.bootstrap
|
3 |
+
from streamlit import config as _config
|
4 |
+
|
5 |
+
proj_dir = Path(__file__).parent
|
6 |
+
filename = proj_dir / "app" / "Top2Vec.py"
|
7 |
+
|
8 |
+
_config.set_option("server.headless", True)
|
9 |
+
args = []
|
10 |
+
|
11 |
+
# streamlit.cli.main_run(filename, args)
|
12 |
+
streamlit.web.bootstrap.run(str(filename), "", args, "")
|
notebooks/explore.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
top2vec[sentence_transformers]==1.0.27
|
2 |
+
scikit-learn==1.1.1
|
3 |
+
jupyter==1.0.0
|
4 |
+
streamlit==1.16.0
|
5 |
+
streamlit-aggrid==0.3.3
|
6 |
+
streamlit-plotly-events==0.0.6
|
7 |
+
plotly==5.9.0
|
8 |
+
datasets==2.8.0
|
9 |
+
keybert==0.7.0
|