Spaces:
Sleeping
Sleeping
import concurrent.futures | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import json | |
import traceback | |
import tempfile | |
import shutil | |
class HuggingChatExecutor: | |
def __init__(self): | |
self.temp_dir = tempfile.TemporaryDirectory() | |
self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=1) | |
self.client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
def _execute_chat(self, message, system_prompt, functions=None): | |
messages = [{"role": "system", "content": system_prompt}] | |
messages.append({"role": "user", "content": message}) | |
try: | |
if functions: | |
# Parse functions string as JSON array | |
functions_list = json.loads(functions) | |
response = self.client.chat_completion( | |
messages, | |
functions=functions_list, | |
stream=False | |
) | |
else: | |
response = self.client.chat_completion( | |
messages, | |
stream=False | |
) | |
# Format the output | |
output = { | |
"message": message, | |
"system_prompt": system_prompt, | |
"functions": functions if functions else "No functions provided", | |
"response": response.choices[0].message | |
} | |
return json.dumps(output, indent=2) | |
except Exception as e: | |
error_trace = traceback.format_exc() | |
return f"Error executing chat:\n{str(e)}\n\nTraceback:\n{error_trace}" | |
def execute(self, message, system_prompt, functions): | |
future = self.executor.submit(self._execute_chat, message, system_prompt, functions) | |
try: | |
output = future.result(timeout=30) | |
return output | |
except concurrent.futures.TimeoutError: | |
return "Error: Timed out waiting for chat response" | |
except Exception as e: | |
return f"Error: {str(e)}" | |
def __del__(self): | |
self.executor.shutdown(wait=False) | |
shutil.rmtree(self.temp_dir.name) | |
def wrapper_execute(message, system_prompt, functions): | |
executor = HuggingChatExecutor() | |
return executor.execute(message, system_prompt, functions) | |
def create_interface(): | |
with gr.Blocks() as demo: | |
gr.Markdown("# HuggingChat Tool Executor") | |
gr.Markdown("Execute chat completions with function calling capabilities") | |
gr.Markdown("### Message") | |
message_input = gr.Textbox( | |
label="User Message", | |
placeholder="Enter your message here...", | |
lines=3 | |
) | |
gr.Markdown("### System Prompt") | |
system_input = gr.Textbox( | |
label="System Prompt", | |
value="You are a helpful AI assistant.", | |
lines=2 | |
) | |
gr.Markdown("### Functions") | |
functions_input = gr.Textbox( | |
label="Functions (JSON array)", | |
placeholder='''[ | |
{ | |
"name": "get_weather", | |
"description": "Get the weather in a location", | |
"parameters": { | |
"type": "object", | |
"properties": { | |
"location": { | |
"type": "string", | |
"description": "The city and state, e.g. San Francisco, CA" | |
} | |
}, | |
"required": ["location"] | |
} | |
} | |
]''', | |
lines=10 | |
) | |
gr.Markdown("### Output") | |
output_text = gr.Textbox(label="Response", lines=20) | |
run_button = gr.Button("Run") | |
run_button.click( | |
wrapper_execute, | |
inputs=[message_input, system_input, functions_input], | |
outputs=output_text | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = create_interface() | |
demo.launch() | |