import concurrent.futures import gradio as gr from huggingface_hub import InferenceClient import json import traceback import tempfile import shutil class HuggingChatExecutor: def __init__(self): self.temp_dir = tempfile.TemporaryDirectory() self.executor = concurrent.futures.ThreadPoolExecutor(max_workers=1) self.client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def _execute_chat(self, message, system_prompt, functions=None): messages = [{"role": "system", "content": system_prompt}] messages.append({"role": "user", "content": message}) try: if functions: # Parse functions string as JSON array functions_list = json.loads(functions) response = self.client.chat_completion( messages, functions=functions_list, stream=False ) else: response = self.client.chat_completion( messages, stream=False ) # Format the output output = { "message": message, "system_prompt": system_prompt, "functions": functions if functions else "No functions provided", "response": response.choices[0].message } return json.dumps(output, indent=2) except Exception as e: error_trace = traceback.format_exc() return f"Error executing chat:\n{str(e)}\n\nTraceback:\n{error_trace}" def execute(self, message, system_prompt, functions): future = self.executor.submit(self._execute_chat, message, system_prompt, functions) try: output = future.result(timeout=30) return output except concurrent.futures.TimeoutError: return "Error: Timed out waiting for chat response" except Exception as e: return f"Error: {str(e)}" def __del__(self): self.executor.shutdown(wait=False) shutil.rmtree(self.temp_dir.name) def wrapper_execute(message, system_prompt, functions): executor = HuggingChatExecutor() return executor.execute(message, system_prompt, functions) def create_interface(): with gr.Blocks() as demo: gr.Markdown("# HuggingChat Tool Executor") gr.Markdown("Execute chat completions with function calling capabilities") gr.Markdown("### Message") message_input = gr.Textbox( label="User Message", placeholder="Enter your message here...", lines=3 ) gr.Markdown("### System Prompt") system_input = gr.Textbox( label="System Prompt", value="You are a helpful AI assistant.", lines=2 ) gr.Markdown("### Functions") functions_input = gr.Textbox( label="Functions (JSON array)", placeholder='''[ { "name": "get_weather", "description": "Get the weather in a location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA" } }, "required": ["location"] } } ]''', lines=10 ) gr.Markdown("### Output") output_text = gr.Textbox(label="Response", lines=20) run_button = gr.Button("Run") run_button.click( wrapper_execute, inputs=[message_input, system_input, functions_input], outputs=output_text ) return demo if __name__ == "__main__": demo = create_interface() demo.launch()