Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from tensorflow.keras.preprocessing.image import load_img, img_to_array
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import gradio as gd
|
5 |
+
from keras.models import load_model
|
6 |
+
model2 = load_model()
|
7 |
+
def predict(image):
|
8 |
+
image=cv2.resize(image,(240,240))
|
9 |
+
image=img_to_array(image)/255.0
|
10 |
+
image = np.expand_dims(image, axis=0)
|
11 |
+
prediction=model2.predict(image)
|
12 |
+
predictions=np.array(prediction)
|
13 |
+
predicted_index=np.argmax(predictions)
|
14 |
+
index_to_class={0:'Disease : Alzheimer || Type : Moderate_Demented',
|
15 |
+
1:'Disease : Alzheimer || Type : MildDemented',
|
16 |
+
2:'Disease : Alzheimer || Type : VeryMildDemented',
|
17 |
+
3:'Disease : tumor || Type : glioma',
|
18 |
+
4:'Disease :tumor || Type : meningioma',
|
19 |
+
5: 'Disease : tumor || Type : pituitary',
|
20 |
+
6:'Disease : None'}
|
21 |
+
predicted_class_name=index_to_class[predicted_index]
|
22 |
+
return predicted_class_name
|
23 |
+
|
24 |
+
|
25 |
+
headline="BRAIN DISEASE DETECTION "
|
26 |
+
a=gd.Interface(predict,inputs=gd.Image(),outputs="text",title=headline)
|
27 |
+
a.launch(share=True, debug=False)
|