from tensorflow.keras.preprocessing.image import load_img, img_to_array import numpy as np import opencv as op import gradio as gd from keras.models import load_model model2 = load_model("./my_model.keras") def predict(image): image=op.resize(image,(240,240)) image=img_to_array(image)/255.0 image = np.expand_dims(image, axis=0) prediction=model2.predict(image) predictions=np.array(prediction) predicted_index=np.argmax(predictions) index_to_class={0:'Disease : Alzheimer || Type : Moderate_Demented', 1:'Disease : Alzheimer || Type : MildDemented', 2:'Disease : Alzheimer || Type : VeryMildDemented', 3:'Disease : tumor || Type : glioma', 4:'Disease :tumor || Type : meningioma', 5: 'Disease : tumor || Type : pituitary', 6:'Disease : None'} predicted_class_name=index_to_class[predicted_index] return predicted_class_name headline="BRAIN DISEASE DETECTION " a=gd.Interface(predict,inputs=gd.Image(),outputs="text",title=headline) a.launch(share=True, debug=False)