bug fixes
Browse files- annotator/utils.py +15 -6
- app.py +49 -22
annotator/utils.py
CHANGED
@@ -3,8 +3,9 @@ import datetime
|
|
3 |
import pandas as pd
|
4 |
import numpy as np
|
5 |
import subprocess
|
6 |
-
from fastcore.foundation import working_directory
|
7 |
from pathlib import Path
|
|
|
8 |
|
9 |
|
10 |
def start_app():
|
@@ -17,9 +18,15 @@ def get_audio(url: str):
|
|
17 |
# subprocess.run(['youtube-dl', '-F', 'bestaudio[ext=m4a]', url])
|
18 |
subprocess.run(["youtube-dl", "-x", "--audio-format", "mp3", url])
|
19 |
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
def annotate(audio_src, model_size="tiny"):
|
22 |
-
|
|
|
23 |
result = model.transcribe(audio_src)
|
24 |
return result
|
25 |
|
@@ -36,13 +43,15 @@ def df_from_result(result):
|
|
36 |
|
37 |
|
38 |
def find_word_timestamp(df, *words):
|
|
|
39 |
for word in words:
|
40 |
vals = df["text"].str.find(word).values
|
41 |
arr = np.where(vals > 1)
|
42 |
-
times = df.iloc[arr]["start"].values
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
46 |
|
47 |
|
48 |
def generate_srt(df):
|
|
|
3 |
import pandas as pd
|
4 |
import numpy as np
|
5 |
import subprocess
|
6 |
+
from fastcore.foundation import working_directory, L
|
7 |
from pathlib import Path
|
8 |
+
import torch
|
9 |
|
10 |
|
11 |
def start_app():
|
|
|
18 |
# subprocess.run(['youtube-dl', '-F', 'bestaudio[ext=m4a]', url])
|
19 |
subprocess.run(["youtube-dl", "-x", "--audio-format", "mp3", url])
|
20 |
|
21 |
+
def get_v_from_url(url):
|
22 |
+
_, val = url.split('?v=')
|
23 |
+
return val.split('&')[0]
|
24 |
+
|
25 |
+
|
26 |
|
27 |
def annotate(audio_src, model_size="tiny"):
|
28 |
+
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
29 |
+
model = whisper.load_model(model_size, device=device)
|
30 |
result = model.transcribe(audio_src)
|
31 |
return result
|
32 |
|
|
|
43 |
|
44 |
|
45 |
def find_word_timestamp(df, *words):
|
46 |
+
l = L()
|
47 |
for word in words:
|
48 |
vals = df["text"].str.find(word).values
|
49 |
arr = np.where(vals > 1)
|
50 |
+
times = list(df.iloc[arr]["start"].values)
|
51 |
+
nt = L(times).map(lambda x: x.split(".")[:-1])
|
52 |
+
l.append(nt)
|
53 |
+
return l
|
54 |
+
|
55 |
|
56 |
|
57 |
def generate_srt(df):
|
app.py
CHANGED
@@ -14,32 +14,59 @@ if not AUDIO_PATH.exists(): AUDIO_PATH.mkdir(exist_ok=True)
|
|
14 |
|
15 |
def make_sidebar():
|
16 |
with st.sidebar:
|
17 |
-
st.
|
18 |
-
st.write('
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
|
21 |
def main():
|
|
|
22 |
make_sidebar()
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
# subprocess.run(['rm', '-rf', 'audio'])
|
45 |
# subprocess.run(['rm', '-rf', 'srt'])
|
|
|
14 |
|
15 |
def make_sidebar():
|
16 |
with st.sidebar:
|
17 |
+
st.markdown('## yt-video-annotator')
|
18 |
+
st.write('Link to the GitHub repo')
|
19 |
+
|
20 |
+
@st.cache(allow_output_mutation=True)
|
21 |
+
def caption_from_url(url):
|
22 |
+
audio_src = get_audio(url)
|
23 |
+
v = get_v_from_url(url)
|
24 |
+
audio_src = globtastic(AUDIO_PATH, file_glob='*.mp3', file_re=v)[0]
|
25 |
+
result = annotate(audio_src)
|
26 |
+
df = df_from_result(result)
|
27 |
+
return audio_src, df
|
28 |
+
|
29 |
+
|
30 |
|
31 |
|
32 |
def main():
|
33 |
+
url, name = None, None
|
34 |
make_sidebar()
|
35 |
+
col1, col2 = st.columns([1.2, 1])
|
36 |
+
with col1:
|
37 |
+
url = st.text_input('Enter URL for the YT video')
|
38 |
+
st.video(url)
|
39 |
+
|
40 |
+
with col2:
|
41 |
+
default_opt = 'Search for words'
|
42 |
+
opt = st.radio('What do you wish to do?', [default_opt, 'Generate subtitles for the entire video'])
|
43 |
+
if opt == default_opt:
|
44 |
+
st.markdown('### Search for words in the video')
|
45 |
+
words = st.text_input('Enter words separated by a comma')
|
46 |
+
words = words.split(',')
|
47 |
+
|
48 |
+
if st.button('Get Timestamps'):
|
49 |
+
audio_src, df = caption_from_url(url)
|
50 |
+
times = find_word_timestamp(df, *words)
|
51 |
+
times = np.asarray(times).reshape(len(words), -1)
|
52 |
+
# st.write(times)
|
53 |
+
for i, word in enumerate(words):
|
54 |
+
st.write(f"{word} is said on {times[i].flatten()} timestamp")
|
55 |
+
|
56 |
+
else:
|
57 |
+
if st.button('Generate SRT'):
|
58 |
+
audio_src, df = caption_from_url(url)
|
59 |
+
name = Path(audio_src).stem
|
60 |
+
s = generate_srt(df)
|
61 |
+
with working_directory(SRT_PATH):
|
62 |
+
write_srt(s, name)
|
63 |
+
|
64 |
+
if name is not None:
|
65 |
+
with working_directory(SRT_PATH):
|
66 |
+
key = get_v_from_url(url)
|
67 |
+
srt = globtastic('.', file_glob='*.srt', file_re=key)[0]
|
68 |
+
with open(srt) as f:
|
69 |
+
st.download_button('Download SRT', f, file_name=f'{name}.srt')
|
70 |
|
71 |
# subprocess.run(['rm', '-rf', 'audio'])
|
72 |
# subprocess.run(['rm', '-rf', 'srt'])
|