Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,183 @@
|
|
1 |
-
import
|
2 |
-
import numpy as np
|
3 |
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
graudio=gr.Audio(type="filepath",show_download_button=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
def test():
|
9 |
-
return 'test'
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
|
|
|
|
12 |
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
outputs=[])
|
17 |
|
18 |
-
|
19 |
-
demo.launch()
|
|
|
1 |
+
import torch
|
|
|
2 |
import time
|
3 |
+
import moviepy.editor as mp
|
4 |
+
import psutil
|
5 |
+
import gradio as gr
|
6 |
+
import spaces
|
7 |
+
from transformers import pipeline
|
8 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
9 |
+
|
10 |
+
DEFAULT_MODEL_NAME = "distil-whisper/distil-large-v3"
|
11 |
+
BATCH_SIZE = 8
|
12 |
+
|
13 |
+
print('start app')
|
14 |
+
|
15 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
16 |
+
if device == "cpu":
|
17 |
+
DEFAULT_MODEL_NAME = "openai/whisper-tiny"
|
18 |
+
|
19 |
+
def load_pipeline(model_name):
|
20 |
+
return pipeline(
|
21 |
+
task="automatic-speech-recognition",
|
22 |
+
model=model_name,
|
23 |
+
chunk_length_s=30,
|
24 |
+
device=device,
|
25 |
+
)
|
26 |
+
|
27 |
+
pipe = load_pipeline(DEFAULT_MODEL_NAME)
|
28 |
+
#pipe = None
|
29 |
+
|
30 |
+
|
31 |
+
from gpustat import GPUStatCollection
|
32 |
+
|
33 |
+
def update_gpu_status():
|
34 |
+
if torch.cuda.is_available() == False:
|
35 |
+
return "No Nvidia Device"
|
36 |
+
try:
|
37 |
+
gpu_stats = GPUStatCollection.new_query()
|
38 |
+
for gpu in gpu_stats:
|
39 |
+
# Assuming you want to monitor the first GPU, index 0
|
40 |
+
gpu_id = gpu.index
|
41 |
+
gpu_name = gpu.name
|
42 |
+
gpu_utilization = gpu.utilization
|
43 |
+
memory_used = gpu.memory_used
|
44 |
+
memory_total = gpu.memory_total
|
45 |
+
memory_utilization = (memory_used / memory_total) * 100
|
46 |
+
gpu_status=(f"GPU {gpu_id}: {gpu_name}, Utilization: {gpu_utilization}%, Memory Used: {memory_used}MB, Memory Total: {memory_total}MB, Memory Utilization: {memory_utilization:.2f}%")
|
47 |
+
return gpu_status
|
48 |
+
|
49 |
+
except Exception as e:
|
50 |
+
print(f"Error getting GPU stats: {e}")
|
51 |
+
return torch_update_gpu_status()
|
52 |
+
|
53 |
+
def torch_update_gpu_status():
|
54 |
+
if torch.cuda.is_available():
|
55 |
+
gpu_info = torch.cuda.get_device_name(0)
|
56 |
+
gpu_memory = torch.cuda.mem_get_info(0)
|
57 |
+
total_memory = gpu_memory[1] / (1024 * 1024)
|
58 |
+
free_memory=gpu_memory[0] /(1024 *1024)
|
59 |
+
used_memory = (gpu_memory[1] - gpu_memory[0]) / (1024 * 1024)
|
60 |
+
|
61 |
+
gpu_status = f"GPU: {gpu_info} Free Memory:{free_memory}MB Total Memory: {total_memory:.2f} MB Used Memory: {used_memory:.2f} MB"
|
62 |
+
else:
|
63 |
+
gpu_status = "No GPU available"
|
64 |
+
return gpu_status
|
65 |
+
|
66 |
+
def update_cpu_status():
|
67 |
+
import datetime
|
68 |
+
# Get the current time
|
69 |
+
current_time = datetime.datetime.now().time()
|
70 |
+
# Convert the time to a string
|
71 |
+
time_str = current_time.strftime("%H:%M:%S")
|
72 |
|
73 |
+
cpu_percent = psutil.cpu_percent()
|
74 |
+
cpu_status = f"CPU Usage: {cpu_percent}% {time_str}"
|
75 |
+
return cpu_status
|
76 |
+
|
77 |
+
def update_status():
|
78 |
+
gpu_status = update_gpu_status()
|
79 |
+
cpu_status = update_cpu_status()
|
80 |
+
sys_status=gpu_status+"\n\n"+cpu_status
|
81 |
+
return sys_status
|
82 |
+
|
83 |
+
def refresh_status():
|
84 |
+
return update_status()
|
85 |
+
|
86 |
+
|
87 |
+
@spaces.GPU
|
88 |
+
def transcribe(audio_path, model_name):
|
89 |
+
print('start transcribe '+str(time.time()))
|
90 |
+
|
91 |
+
if audio_path is None:
|
92 |
+
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
93 |
+
|
94 |
+
audio_path=audio_path.strip()
|
95 |
+
model_name=model_name.strip()
|
96 |
+
|
97 |
+
global pipe
|
98 |
+
if model_name != pipe.model.name_or_path:
|
99 |
+
pipe = load_pipeline(model_name)
|
100 |
+
|
101 |
+
start_time = time.time() # Record the start time
|
102 |
+
print('start record time '+str(time.time()))
|
103 |
+
# Load the audio file and calculate its duration
|
104 |
+
audio = mp.AudioFileClip(audio_path)
|
105 |
+
audio_duration = audio.duration
|
106 |
+
print('start pipe '+str(time.time()))
|
107 |
+
text = pipe(audio_path, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"]
|
108 |
+
end_time = time.time() # Record the end time
|
109 |
+
|
110 |
+
transcription_time = end_time - start_time # Calculate the transcription time
|
111 |
+
|
112 |
+
# Create the transcription time output with additional information
|
113 |
+
transcription_time_output = (
|
114 |
+
f"Transcription Time: {transcription_time:.2f} seconds\n"
|
115 |
+
f"Audio Duration: {audio_duration:.2f} seconds\n"
|
116 |
+
f"Model Used: {model_name}\n"
|
117 |
+
f"Device Used: {'GPU' if torch.cuda.is_available() else 'CPU'}"
|
118 |
+
)
|
119 |
+
|
120 |
+
print('return transcribe '+str(time.time()))
|
121 |
+
|
122 |
+
return text, transcription_time_output
|
123 |
+
|
124 |
+
@spaces.GPU
|
125 |
+
def handle_upload_audio(audio_path,model_name,old_transcription=''):
|
126 |
+
print('old_trans:' + old_transcription)
|
127 |
+
(text,transcription_time_output)=transcribe(audio_path,model_name)
|
128 |
+
return text+'\n\n'+old_transcription, transcription_time_output
|
129 |
|
130 |
graudio=gr.Audio(type="filepath",show_download_button=True)
|
131 |
+
grmodel_textbox=gr.Textbox(
|
132 |
+
label="Model Name",
|
133 |
+
value=DEFAULT_MODEL_NAME,
|
134 |
+
placeholder="Enter the model name",
|
135 |
+
info="Some available models: distil-whisper/distil-large-v3 distil-whisper/distil-medium.en Systran/faster-distil-whisper-large-v3 Systran/faster-whisper-large-v3 Systran/faster-whisper-medium openai/whisper-tiny, openai/whisper-base, openai/whisper-medium, openai/whisper-large-v3",
|
136 |
+
)
|
137 |
+
groutputs=[gr.TextArea(label="Transcription",elem_id="transcription_textarea",interactive=True,lines=20,show_copy_button=True),
|
138 |
+
gr.TextArea(label="Transcription Info",interactive=True,show_copy_button=True)]
|
139 |
+
|
140 |
+
mf_transcribe = gr.Interface(
|
141 |
+
fn=handle_upload_audio,
|
142 |
+
inputs=[
|
143 |
+
graudio, #"numpy" or filepath
|
144 |
+
#gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
145 |
+
grmodel_textbox,
|
146 |
+
],
|
147 |
+
outputs=groutputs,
|
148 |
+
theme="huggingface",
|
149 |
+
title="Whisper Transcription",
|
150 |
+
description=(
|
151 |
+
"Scroll to Bottom to show system status. "
|
152 |
+
"Transcribe long-form microphone or audio file after uploaded audio! "
|
153 |
+
),
|
154 |
+
allow_flagging="never",
|
155 |
+
)
|
156 |
+
|
157 |
+
|
158 |
+
demo = gr.Blocks()
|
159 |
|
|
|
|
|
160 |
|
161 |
+
with demo:
|
162 |
+
gr.TabbedInterface([mf_transcribe, ], ["Audio",])
|
163 |
+
|
164 |
+
with gr.Row():
|
165 |
+
refresh_button = gr.Button("Refresh Status") # Create a refresh button
|
166 |
+
|
167 |
+
sys_status_output = gr.Textbox(label="System Status", interactive=False)
|
168 |
+
|
169 |
+
|
170 |
+
# Link the refresh button to the refresh_status function
|
171 |
+
refresh_button.click(refresh_status, None, [sys_status_output])
|
172 |
|
173 |
+
# Load the initial status using update_status function
|
174 |
+
demo.load(update_status, inputs=None, outputs=[sys_status_output], every=2, queue=False)
|
175 |
|
176 |
+
graudio.stop_recording(handle_upload_audio,inputs=[graudio,grmodel_textbox,groutputs[0]],outputs=groutputs)
|
177 |
+
graudio.upload(handle_upload_audio,inputs=[graudio,grmodel_textbox,groutputs[0]],outputs=groutputs)
|
178 |
+
|
179 |
|
180 |
+
# Launch the Gradio app
|
181 |
+
demo.launch(share=True)
|
|
|
182 |
|
183 |
+
print('launched\n\n')
|
|