devilent2 commited on
Commit
927931c
·
verified ·
1 Parent(s): 00f1499

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -165
app.py CHANGED
@@ -1,171 +1,14 @@
1
- import torch
2
- import time
3
- import moviepy.editor as mp
4
- import psutil
5
  import gradio as gr
6
- import spaces
7
- from transformers import pipeline
8
- from transformers.pipelines.audio_utils import ffmpeg_read
9
-
10
- DEFAULT_MODEL_NAME = "distil-whisper/distil-large-v3"
11
- BATCH_SIZE = 8
12
-
13
- device = 0 if torch.cuda.is_available() else "cpu"
14
- if device == "cpu":
15
- DEFAULT_MODEL_NAME = "openai/whisper-tiny"
16
-
17
- def load_pipeline(model_name):
18
- return pipeline(
19
- task="automatic-speech-recognition",
20
- model=model_name,
21
- chunk_length_s=30,
22
- device=device,
23
- )
24
-
25
- pipe = load_pipeline(DEFAULT_MODEL_NAME)
26
-
27
- @spaces.GPU
28
- def transcribe(inputs, task, model_name):
29
- if inputs is None:
30
- raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
31
-
32
- global pipe
33
- if model_name != pipe.model.name_or_path:
34
- pipe = load_pipeline(model_name)
35
-
36
- start_time = time.time() # Record the start time
37
-
38
- # Load the audio file and calculate its duration
39
- audio = mp.AudioFileClip(inputs)
40
- audio_duration = audio.duration
41
-
42
- text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
43
- end_time = time.time() # Record the end time
44
-
45
- transcription_time = end_time - start_time # Calculate the transcription time
46
-
47
- # Create the transcription time output with additional information
48
- transcription_time_output = (
49
- f"Transcription Time: {transcription_time:.2f} seconds\n"
50
- f"Audio Duration: {audio_duration:.2f} seconds\n"
51
- f"Model Used: {model_name}\n"
52
- f"Device Used: {'GPU' if torch.cuda.is_available() else 'CPU'}"
53
- )
54
-
55
- return text, transcription_time_output
56
-
57
- from gpustat import GPUStatCollection
58
-
59
- def update_gpu_status():
60
- if torch.cuda.is_available() == False:
61
- return "No Nviadia Device"
62
- try:
63
- gpu_stats = GPUStatCollection.new_query()
64
- for gpu in gpu_stats:
65
- # Assuming you want to monitor the first GPU, index 0
66
- gpu_id = gpu.index
67
- gpu_name = gpu.name
68
- gpu_utilization = gpu.utilization
69
- memory_used = gpu.memory_used
70
- memory_total = gpu.memory_total
71
- memory_utilization = (memory_used / memory_total) * 100
72
- gpu_status=(f"GPU {gpu_id}: {gpu_name}, Utilization: {gpu_utilization}%, Memory Used: {memory_used}MB, Memory Total: {memory_total}MB, Memory Utilization: {memory_utilization:.2f}%")
73
- return gpu_status
74
-
75
- except Exception as e:
76
- print(f"Error getting GPU stats: {e}")
77
- return torch_update_gpu_status()
78
-
79
- def torch_update_gpu_status():
80
- if torch.cuda.is_available():
81
- gpu_info = torch.cuda.get_device_name(0)
82
- gpu_memory = torch.cuda.mem_get_info(0)
83
- total_memory = gpu_memory[1] / (1024 * 1024)
84
- used_memory = (gpu_memory[1] - gpu_memory[0]) / (1024 * 1024)
85
-
86
- gpu_status = f"GPU: {gpu_info}\nTotal Memory: {total_memory:.2f} MB\nUsed Memory: {used_memory:.2f} MB"
87
- else:
88
- gpu_status = "No GPU available"
89
- return gpu_status
90
-
91
- def update_cpu_status():
92
- import datetime
93
- # Get the current time
94
- current_time = datetime.datetime.now().time()
95
- # Convert the time to a string
96
- time_str = current_time.strftime("%H:%M:%S")
97
-
98
- cpu_percent = psutil.cpu_percent()
99
- cpu_status = f"CPU Usage: {cpu_percent}% {time_str}"
100
- return cpu_status
101
-
102
- def update_status():
103
- gpu_status = update_gpu_status()
104
- cpu_status = update_cpu_status()
105
- return gpu_status, cpu_status
106
-
107
- def refresh_status():
108
- return update_status()
109
 
110
- demo = gr.Blocks()
111
 
112
- mf_transcribe = gr.Interface(
113
- fn=transcribe,
114
- inputs=[
115
- gr.Audio(type="filepath"),
116
- gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
117
- gr.Textbox(
118
- label="Model Name",
119
- value=DEFAULT_MODEL_NAME,
120
- placeholder="Enter the model name",
121
- info="Some available models: distil-whisper/distil-large-v3 distil-whisper/distil-medium.en Systran/faster-distil-whisper-large-v3 Systran/faster-whisper-large-v3 Systran/faster-whisper-medium openai/whisper-tiny, openai/whisper-base, openai/whisper-medium, openai/whisper-large-v3",
122
- ),
123
- ],
124
- outputs=[gr.TextArea(label="Transcription"), gr.TextArea(label="Transcription Info")],
125
- theme="huggingface",
126
- title="Whisper Transcription",
127
- description=(
128
- "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the specified OpenAI Whisper"
129
- " checkpoint and 🤗 Transformers to transcribe audio files of arbitrary length."
130
- ),
131
- allow_flagging="never",
132
- )
133
 
134
- file_transcribe = gr.Interface(
135
- fn=transcribe,
136
- inputs=[
137
- gr.Audio(type="filepath", label="Audio file"),
138
- gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
139
- gr.Textbox(
140
- label="Model Name",
141
- value=DEFAULT_MODEL_NAME,
142
- placeholder="Enter the model name",
143
- info="Some available models: openai/whisper-tiny, openai/whisper-base, openai/whisper-medium, openai/whisper-large-v2",
144
- ),
145
- ],
146
- outputs=[gr.TextArea(label="Transcription"), gr.TextArea(label="Transcription Info")],
147
- theme="huggingface",
148
- title="Whisper Transcription",
149
- description=(
150
- "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the specified OpenAI Whisper"
151
- " checkpoint and 🤗 Transformers to transcribe audio files of arbitrary length."
152
- ),
153
- allow_flagging="never",
154
- )
155
- with demo:
156
- gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"])
157
-
158
- with gr.Row():
159
- refresh_button = gr.Button("Refresh Status") # Create a refresh button
160
-
161
- gpu_status_output = gr.Textbox(label="GPU Status", interactive=False)
162
- cpu_status_output = gr.Textbox(label="CPU Status", interactive=False)
163
-
164
- # Link the refresh button to the refresh_status function
165
- refresh_button.click(refresh_status, None, [gpu_status_output, cpu_status_output])
166
 
167
- # Load the initial status using update_status function
168
- demo.load(update_status, inputs=None, outputs=[gpu_status_output, cpu_status_output], every=2, queue=False)
 
169
 
170
- # Launch the Gradio app
171
- demo.launch(share=True)
 
 
 
 
 
1
  import gradio as gr
2
+ import numpy as np
3
+ import time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
 
5
 
6
+ graudio=gr.Audio(type="filepath",show_download_button=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
+ demo = gr.Interface(fake_diffusion,
10
+ inputs=[graudio],
11
+ outputs="image")
12
 
13
+ if __name__ == "__main__":
14
+ demo.launch()