|
import os |
|
import pandas as pd |
|
import requests |
|
import huggingface_hub |
|
import gradio as gr |
|
|
|
data = pd.read_csv("data.csv", dtype="str") |
|
webhook_url = os.environ.get("WEBHOOK_URL") |
|
|
|
archlinks = { |
|
"Based": "https://arxiv.org/abs/2402.18668", |
|
"Griffin": "https://arxiv.org/abs/2402.19427", |
|
"H3": "https://arxiv.org/abs/2212.14052", |
|
"Mamba": "https://arxiv.org/abs/2312.00752", |
|
"Jamba": "https://arxiv.org/abs/2403.19887", |
|
"RWKV-4": "https://arxiv.org/abs/2305.13048", |
|
"RWKV-5": "https://arxiv.org/abs/2404.05892", |
|
"RWKV-6": "https://arxiv.org/abs/2404.05892", |
|
"StripedHyena": "https://www.together.ai/blog/stripedhyena-7b", |
|
} |
|
|
|
def filter_table(cols, name, type, arch, size): |
|
tmp = data |
|
|
|
tmp = tmp[tmp["Name"].str.contains(name, case=False)] |
|
tmp = tmp[tmp["Type"].isin(type)] |
|
tmp = tmp[tmp["Architecture"].isin(arch)] |
|
tmp = tmp[tmp["Model Size"].isin(size)] |
|
|
|
tmp["Type"] = tmp["Type"].apply(lambda x: x[0]) |
|
tmp = tmp.rename({"Type": "T"}, axis=1) |
|
tmp["Name"] = tmp["Name"].apply(lambda x: f'<a target="_blank" href="https://huggingface.co/{x}" style="color:var(--link-text-color);text-decoration:underline;text-decoration-style:dotted">{x}</a>') |
|
tmp["Architecture"] = tmp["Architecture"].apply(lambda x: f'<a target="_blank" href="{archlinks[x]}" style="color:var(--link-text-color);text-decoration:underline;text-decoration-style:dotted">{x}</a>') |
|
tmp["Base Model"] = tmp["Base Model"].apply(lambda x: f'<a target="_blank" href="https://huggingface.co/{x}" style="color:var(--link-text-color);text-decoration:underline;text-decoration-style:dotted">{x}</a>' if x != "base" else "") |
|
|
|
tmp = tmp.drop(cols, axis=1) |
|
|
|
return tmp |
|
|
|
def submit_model(name): |
|
try: |
|
huggingface_hub.hf_hub_download(repo_id=name, filename="config.json") |
|
except huggingface_hub.utils._errors.EntryNotFoundError: |
|
return "# ERROR: Model does not have a config.json file!" |
|
except huggingface_hub.utils._errors.RepositoryNotFoundError: |
|
return "# ERROR: Model could not be found on the Hugging Face Hub!" |
|
except requests.exceptions.HTTPError: |
|
return "# ERROR: Network error while validating model. Please try again later." |
|
except Exception as e: |
|
print(e) |
|
return "ERROR: Unexpected error. Please try again later." |
|
|
|
try: |
|
result = requests.post(webhook_url, json={"content":name}) |
|
except requests.exceptions.HTTPError: |
|
return "# ERROR: Network error while contacting queue. Please try again in a few minutes." |
|
except Exception as e: |
|
print(e) |
|
return "ERROR: Unexpected error. Please try again later." |
|
|
|
return "# SUCCESS: Please wait up to 24 hours for your model to be added to the queue." |
|
|
|
with gr.Blocks(css=".gradio-container{max-width:95%!important} .tab-buttons button{font-size:1.3em}") as demo: |
|
gr.HTML('<h1 style="text-align:center"><span style="font-size:1.3em">Subquadratic LLM Leaderboard</span></h1>') |
|
gr.Markdown("**REMEMBER:** If you don't see an eligible model here, make sure to submit it! We hope to incentivize subquadratic/attention-free LLM development through friendly competition.") |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.Tab("🏅 LLM Benchmark"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
namefilter = gr.Textbox(max_lines=1, placeholder="Search by model name and hit Enter...", show_label=False) |
|
typefilter = gr.CheckboxGroup(show_label=False, choices=list(data["Type"].unique()), value=[n for n in data["Type"].unique() if n not in ["⏳ Pending"]]) |
|
|
|
with gr.Column(): |
|
archfilter = gr.CheckboxGroup(label="Filter by model architecture", choices=list(archlinks.keys()), value=list(archlinks.keys())) |
|
sizefilter = gr.CheckboxGroup(label="Filter by model size", choices=list(data["Model Size"].unique()), value=list(data["Model Size"].unique())) |
|
|
|
with gr.Column(): |
|
colfilter = gr.CheckboxGroup(label="Hide columns", choices=list(data.columns)[2:], value=["Architecture","Model Size","Base Model"]) |
|
|
|
table = gr.Dataframe(filter_table(["Architecture","Model Size","Base Model"],"",[n for n in data["Type"].unique() if n not in ["⏳ Pending"]],list(archlinks.keys()),list(data["Model Size"].unique())), datatype="markdown") |
|
|
|
|
|
|
|
namefilter.submit(filter_table, [colfilter,namefilter,typefilter,archfilter,sizefilter], table) |
|
|
|
for filter in [colfilter,typefilter,archfilter,sizefilter]: |
|
filter.input(filter_table, [colfilter,namefilter,typefilter,archfilter,sizefilter], table) |
|
|
|
with gr.Tab("⚖️ Comparison"): |
|
gr.Markdown("This table is whitelisted to one model per architecture, specifically 1.5B models trained on The Pile for 1 epoch, for a direct comparison of architectures.") |
|
gr.Dataframe(data[data["Name"].isin(["EleutherAI/pythia-1.4b","RWKV/rwkv-4-1b5-pile","state-spaces/mamba-1.4b","danfu09/H3-1.3B"])].drop(["Type","Model Size","Base Model"], axis=1), datatype="markdown") |
|
|
|
with gr.Tab("📝 About"): |
|
gr.Markdown(""" |
|
The **Subquadratic LLM Leaderboard** evaluates LLMs with subquadratic/attention-free architectures (i.e. RWKV & Mamba) with the goal of providing open |
|
evaluation results while the architectures themselves are pending inclusion/release in the 🤗 Transformers library. |
|
|
|
The metrics are the same as the Open LLM Leaderboard: ARC 25-shot, HellaSwag 10-shot, MMLU 5-shot, TruthfulQA zeroshot, Winogrande 5-shot, and GSM8K 5-shot. |
|
|
|
This leaderboard is maintained by Devin Gulliver and is perpetually under construction, check back regularly for further improvements! |
|
|
|
Compute for evaluating RWKV models is generously provided by [Recursal AI](https://recursal.ai). |
|
""") |
|
|
|
with gr.Tab("🚀 Submit here!"): |
|
with gr.Group(): |
|
with gr.Row(): |
|
model_name = gr.Textbox(max_lines=1, placeholder="Enter model name...", show_label=False, scale=4) |
|
submit = gr.Button("Submit", variant="primary", scale=0) |
|
|
|
output = gr.Markdown("Enter a public HF repo id, then hit Submit to add it to the evaluation queue.") |
|
|
|
submit.click(fn=submit_model, inputs=model_name, outputs=output) |
|
|
|
demo.launch(show_api=False, allowed_paths=["data.csv"]) |