import os
os.environ["OPENAI_API_KEY"] = "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"
import openai
import os
import PyPDF2
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
openai.api_key = os.getenv('OPENAI_API_KEY')
def get_completion(prompt, model="gpt-3.5-turbo", temperature=0, max_tokens=500):
messages = [{"role": "user", "content": prompt}]
response = openai.ChatCompletion.create(
model=model,
temperature=temperature,
max_tokens=max_tokens,
messages=messages,
)
return response.choices[0].message["content"]
def generate_prompt(text, format="text"):
prompt = f"""Play as an AI HR recruiter specialist and extract all the jobs as a list with :
1. Job Title
2. Location
3. Educations as list
4. Experiences as list
5. Skills and Competences as list
6. Functions and Tasks as list
7. Return the result in {format} format \
here the text \
``` {text}```
"""
return prompt
import PyPDF2
def read_pdf(file_path):
pdf_file = open(file_path, 'rb')
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
pdf_file.close()
return text
import PyPDF2
def summarize(input):
text = read_pdf(input.name)
prompt = generate_prompt(text)
response = get_completion(prompt)
return response
import gradio as gr
gr.close_all()
demo = gr.Interface(fn=summarize, inputs="file", outputs="text",title="Experiences And Skills Extraction From PDF file with gpt-3.5-turbo")
demo.launch()
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
import gradio as gr
def colorize_text(text):
return "" + text + "" "" + "Experiences" + ""
iface = gr.Interface(fn=colorize_text, inputs="text", outputs="html")
iface.launch()