sushmanth commited on
Commit
d3fdb4c
·
1 Parent(s): 0c5d9b1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -166
README.md CHANGED
@@ -8,169 +8,66 @@ pinned: false
8
  license: mit
9
  ---
10
 
11
- <p align="center">
12
- <img src = "https://raw.githubusercontent.com/DevoLearn/devolearn/master/images/banner_1.jpg">
13
- </p>
14
-
15
- ![Build Status](https://github.com/DevoLearn/devolearn/actions/workflows/main.yml/badge.svg)
16
- [![codecov](https://codecov.io/gh/DevoLearn/devolearn/branch/master/graph/badge.svg?token=F8AJZSGWXJ)](https://codecov.io/gh/DevoLearn/devolearn)
17
- [![](https://img.shields.io/github/issues/DevoLearn/devolearn)](https://github.com/DevoLearn/devolearn/issues)
18
- [![](https://img.shields.io/github/contributors/DevoLearn/devolearn)](https://github.com/DevoLearn/devolearn/graphs/contributors)
19
- [![](https://img.shields.io/github/last-commit/DevoLearn/devolearn)](https://github.com/DevoLearn/devolearn/commits/master)
20
- [![](https://img.shields.io/twitter/url?color=green&label=Slack&logo=slack&logoColor=blue&style=social&url=https%3A%2F%2Fopenworm.slack.com%2Farchives%2FCMVFU7Q4W)](https://openworm.slack.com/archives/CMVFU7Q4W)
21
- [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/DevoLearn/data-science-demos/blob/master/devolearn_docs/devolearn_quickstart.ipynb)
22
-
23
-
24
- ## Contents
25
-
26
- * [Example notebooks](https://github.com/DevoLearn/devolearn#example-notebooks)
27
- * [Segmenting the C. elegans embryo](https://github.com/DevoLearn/devolearn#segmenting-the-c-elegans-embryo)
28
- * [Generating synthetic images of embryos with a GAN](https://github.com/DevoLearn/devolearn#generating-synthetic-images-of-embryos-with-a-pre-trained-gan)
29
- * [Predicting populations of cells within the C. elegans embryo](https://github.com/DevoLearn/devolearn#predicting-populations-of-cells-within-the-c-elegans-embryo)
30
- * [Contributing to DevoLearn](https://github.com/DevoLearn/devolearn/blob/master/.github/contributing.md#contributing-to-devolearn)
31
- * [Links to datasets](https://github.com/DevoLearn/devolearn#links-to-datasets)
32
- * [Contact us](https://github.com/DevoLearn/devolearn#authorsmaintainers)
33
-
34
-
35
- ### Installation
36
- ```python
37
- pip install devolearn
38
- ```
39
- ### Example notebooks
40
- <p align="center">
41
- <img src = "https://raw.githubusercontent.com/DevoLearn/data-science-demos/master/Networks/nodes_matrix_long_smooth.gif" width = "40%">
42
- <img src = "https://raw.githubusercontent.com/DevoLearn/data-science-demos/master/Networks/3d_node_map.gif" width = "40%">
43
- </p>
44
-
45
- * [Extracting centroid maps and making 3d centroid models](https://nbviewer.jupyter.org/github/DevoLearn/data-science-demos/blob/master/Networks/experiments_with_devolearn_node_maps.ipynb)
46
-
47
- ### Segmenting the Cell Membrane in C. elegans embryo
48
- <p align="center">
49
- <img src = "https://raw.githubusercontent.com/DevoLearn/devolearn/master/images/pred_centroids.gif" width = "80%">
50
- </p>
51
-
52
- * Importing the model
53
- ```python
54
- from devolearn import cell_membrane_segmentor
55
- segmentor = cell_membrane_segmentor()
56
-
57
- ```
58
-
59
- * Running the model on an image and viewing the prediction
60
- ```python
61
- seg_pred = segmentor.predict(image_path = "sample_data/images/seg_sample.jpg")
62
- plt.imshow(seg_pred)
63
- plt.show()
64
- ```
65
-
66
- * Running the model on a video and saving the predictions into a folder
67
- ```python
68
- filenames = segmentor.predict_from_video(video_path = "sample_data/videos/seg_sample.mov", centroid_mode = False, save_folder = "preds")
69
- ```
70
-
71
- * Finding the centroids of the segmented features
72
- ```python
73
- seg_pred, centroids = segmentor.predict(image_path = "sample_data/images/seg_sample.jpg", centroid_mode = True)
74
- plt.imshow(seg_pred)
75
- plt.show()
76
- ```
77
-
78
- * Saving the centroids from each frame into a CSV
79
-
80
- ```python
81
- df = segmentor.predict_from_video(video_path = "sample_data/videos/seg_sample.mov", centroid_mode = True, save_folder = "preds")
82
- df.to_csv("centroids.csv")
83
- ```
84
-
85
- ### Segmenting the Cell Nucleus in C. elegans embryo
86
- <p align="center">
87
- <img src = "https://huggingface.co/spaces/devoworm-group/README/blob/main/images/nucleus_segmentation.gif" width = "50%">
88
- </p>
89
-
90
- * Importing the model
91
- ```python
92
- from devolearn import cell_nucleus_segmentor
93
- segmentor = cell_nucleus_segmentor()
94
-
95
- ```
96
-
97
- * Running the model on an image and viewing the prediction
98
- ```python
99
- seg_pred = segmentor.predict(image_path = "sample_data/images/nucleus_seg_sample.jpg")
100
- plt.imshow(seg_pred)
101
- plt.show()
102
- ```
103
-
104
- ### Generating synthetic images of embryos with a Pre-trained GAN
105
- <p align="center">
106
- <img src = "https://raw.githubusercontent.com/devoworm/GSoC-2020/master/Pre-trained%20Models%20(DevLearning)/images/generated_embryos_3.gif" width = "30%">
107
- </p>
108
-
109
- * Importing the model
110
- ```python
111
- from devolearn import Generator, embryo_generator_model
112
- generator = embryo_generator_model()
113
-
114
- ```
115
-
116
- * Generating a picture and viewing it with [matplotlib](https://matplotlib.org/)
117
- ```python
118
- gen_image = generator.generate()
119
- plt.imshow(gen_image)
120
- plt.show()
121
-
122
- ```
123
-
124
- * Generating n images and saving them into `foldername` with a custom size
125
-
126
- ```python
127
- generator.generate_n_images(n = 5, foldername= "generated_images", image_size= (700,500))
128
- ```
129
-
130
- ---
131
-
132
- ### Predicting populations of cells within the C. elegans embryo
133
-
134
- <p align="center">
135
- <img src = "https://raw.githubusercontent.com/devoworm/GSoC-2020/master/Pre-trained%20Models%20(DevLearning)/images/resnet_preds_with_input.gif" width = "60%">
136
- </p>
137
-
138
- * Importing the population model for inferences
139
- ```python
140
- from devolearn import lineage_population_model
141
- ```
142
-
143
- * Loading a model instance to be used to estimate lineage populations of embryos from videos/photos.
144
- ```python
145
- model = lineage_population_model(device = "cpu")
146
- ```
147
-
148
- * Making a prediction from an image
149
- ```python
150
- print(model.predict(image_path = "sample_data/images/embryo_sample.png"))
151
- ```
152
-
153
- * Making predictions from a video and saving the predictions into a CSV file
154
- ```python
155
- results = model.predict_from_video(video_path = "sample_data/videos/embryo_timelapse.mov", save_csv = True, csv_name = "video_preds.csv", ignore_first_n_frames= 10, ignore_last_n_frames= 10, postprocess = False)
156
- ```
157
-
158
- * Plotting the model's predictions from a video
159
- ```python
160
- plot = model.create_population_plot_from_video(video_path = "sample_data/videos/embryo_timelapse.mov", save_plot= True, plot_name= "plot.png", ignore_last_n_frames= 0, postprocess = False)
161
- plot.show()
162
- ```
163
-
164
- ## Links to Datasets
165
- | **Model** | **Data source** |
166
- |-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
167
- | Segmenting the cell membrane in C. elegans embryo | [3DMMS: robust 3D Membrane Morphological Segmentation of C. elegans embryo](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2720-x#Abs1/) |
168
- | Segmenting the nucleus in C. elegans embryo | [C. elegans Cell-Tracking-Challenge dataset](http://celltrackingchallenge.net/3d-datasets/)
169
- | Cell lineage population prediction + embryo GAN | [EPIC dataset](https://epic.gs.washington.edu/)
170
-
171
- ## Authors/maintainers:
172
- * [Mayukh Deb](https://twitter.com/mayukh091)
173
- * [Ujjwal Singh](https://twitter.com/ujjjwalll)
174
- * [Dr. Bradly Alicea](https://twitter.com/balicea1)
175
-
176
- Feel free to join our [Slack workspace](https://openworm.slack.com/archives/CMVFU7Q4W)!
 
8
  license: mit
9
  ---
10
 
11
+ # DevoWorm
12
+
13
+ The DevoWorm group website is located at [devoworm.weebly.com](http://devoworm.weebly.com/). The website features links to
14
+ educational, academic, media-related and collaborative opportunities associated with the project. The DevoZoo is located at [devoworm.github.io](http://devoworm.github.io), and features content relevant to community education and engagement. DevoWorm is affiliated with the [OpenWorm Foundation](http://www.openworm.org/) and the [Orthogonal Research Laboratory](http://orthogonal-research.weebly.com/). We engage in Open Science, an encourage the use of Jupyter Notebooks, short video descriptions of research, and demos.
15
+
16
+ ## Roadmap
17
+
18
+ DevoWorm is currently divided into three loosely-knit interest areas: developmental dynamics, cybernetics and digital morphogenesis, and reproduction and developmental plasticity. While our main interest is in the nematode *Caenorhabditis elegans*, we are also interested in cross-species comparative work. We also have three additional types of initiative which cross-cut the interest areas: theory-building, education, and open science. These initiatives are infused into our interest areas.
19
+
20
+ **Developmental Dynamics** currently involves using secondary data collected from embryos along with bioinformatic and data science techniques to answer questions regarding the process of early embryogenesis and the timing of later morphogenesis. To address these problems, we have used number of innovative approaches.
21
+
22
+ **Cybernetics and Digital Morphogenesis** has involved using platforms such as Morphozoic and theoretical approaches such as Multicell Systems and Braitenberg Vehicles to better understand physical interactions during embryogenesis and morphogenesis. We have also explored the use of cybernetic models and concepts to better understand the general process of embryogenesis.
23
+
24
+ **Reproduction and Developmental Plasticity** involves utilizing an evo-devo approach to understand *Caenorhabditis elegans* more generally. Our existing datasets and papers include a focus on larval development and life-history processes. This area of the project also features primary empirical data, based on formal experimental design.
25
+
26
+ Objective | Examples
27
+ --- | ---
28
+ Developmental Dynamics (DD) |
29
+ DD | [Comparative Quantitative Embryogenesis](http://www.mdpi.com/2079-7737/5/3/33)
30
+ DD | [Differentiation Trees and Maps](http://www.biorxiv.org/content/early/2016/07/07/062539)
31
+ DD | [Embryo Networks and Developmental Connectomes](https://doi.org/10.1101/146035)
32
+ DD | [Time-series of Terminal Differentiation](https://www.biorxiv.org/content/early/2018/03/14/282004)
33
+ Cybernetics and Digital Morphogenesis (C-DM) |
34
+ C-DM | [Morphozoic (Cellular Automata)](https://www.researchgate.net/publication/311738597_Morphozoic_Cellular_Automata_with_Nested_Neighborhoods_as_a_Metamorphic_Representation_of_Morphogenesis)
35
+ C-DM | [Multicell Systems](https://github.com/Orthogonal-Research-Lab/origins-embryo/tree/master/Multicell%20Systems)
36
+ C-DM | [Braitenberg's Vehicles and Games](https://www.sciencedirect.com/science/article/pii/S0303264718302065?via%3Dihub)
37
+ Reproduction and Developmental Plasticity (R-DP) |
38
+ R-DP | [Experimental Evolution](http://rsos.royalsocietypublishing.org/content/3/11/160496)
39
+ R-DP | [Life-history Plasticity](http://www.biorxiv.org/content/early/2016/03/24/045609)
40
+ R-DP | [Dynamical Heterochrony](https://github.com/Orthogonal-Research-Lab/Developmental-Incongruities-and-Heterochrony/blob/master/Developmental-Incongruity-Heterochrony.md)
41
+
42
+ ## Repos in DevoWorm Github
43
+
44
+ Repo Name | Description
45
+ --- | ---
46
+ [DevoWorm](https://github.com/devoworm/DevoWorm) | Basic Secondary _C. elegans_ Embryogenetic Data
47
+ [Embryo Segmentation](https://github.com/devoworm/EmbryoSegmentation) | Embryo Segmentation Software (GSoC 2017)
48
+ [Devlopmental XML and Networks](https://github.com/devoworm/GSoC-2018) | Developmental XML and Networks (GSoC 2018)
49
+ [Semantic Phenotypes](https://github.com/devoworm/GSOC-2019) | Semantic Phenotypes (GSoC 2019)
50
+ [CC3D](https://github.com/devoworm/CC3D-local) | CompuCell 3D Models
51
+ [Embryogenetic Connectome](https://github.com/devoworm/embryogenetic-connectome)| Embryogenetic Connectome Analysis
52
+ [Assorted Notebooks](https://github.com/devoworm/devoworm.github.io) | Project-related Jupyter Notebooks
53
+ [Graphical Visualization](https://github.com/devoworm/Graph-Code) | Code for Graph Creation
54
+ [Datasets and Analysis](https://github.com/devoworm/DevoWorm) | Tools for Developmental Data Science
55
+ [Morphozoic](https://github.com/devoworm/Morphozoic) | Morphozoic Models
56
+ [Analysis of Developmental Trees (AoDT)](https://github.com/devoworm/AoDT) | Analysis of Developmental Trees (AoDT)
57
+ [OW-DW Education](https://github.com/devoworm/OW-DW-Education) | OpenWorm-DevoWorm Education (Curriculum-building)
58
+ [TSMs](https://github.com/devoworm/Triangular-State-Machines-TSM) | Triangular State Machine (TSMs)
59
+ [Zebrafish Embryo](https://github.com/devoworm/zebrafish-embryo) | Zebrafish Embryo
60
+ [_n_-D Visualization](https://github.com/devoworm/nD-visualization) | n-D Visualization
61
+ [Drosophila Imaginal Disc Segmentation](https://github.com/devoworm/Drosophila-imaginal-disc-segmentation)|Drosophila Imaginal Disc Segmentation
62
+ [Drosophila Embryo (fused cell centroids)](https://github.com/devoworm/Drosophila-embryo-fused-cell-centroids)|Drosophila Embryo (fused cell centroids)
63
+ [Digital _Bacillaria_](https://github.com/devoworm/Digital-Bacillaria) | Quantifying _Bacillaria_ (Diatom) Phenotypes
64
+ [Mouse Embryo (Zygote to Blastocyst)](https://github.com/devoworm/Mouse-Embryo-Zygote-to-Blastocyst) | Data from Early Mouse Embryo
65
+ [DW-ML](https://github.com/devoworm/DW-ML) | DevoWormML (interest area for applied Machine Learning)
66
+ [AoDT](https://github.com/devoworm/AoDT) | Analysis of Developmental Trees
67
+ [Compositionality](https://github.com/devoworm/Compositionality) | Compositionality and Category Theory as Applied to Development
68
+ [Macro-Mechanisms for Embryogenesis](https://github.com/devoworm/Macro-mechanisms-for-Embryogenesis) | Collective Mechanisms of Morphogenesis in Embryos
69
+ [Experimental Evolution](https://github.com/devoworm/Experimental-Evolution) | Experimental Evolution in _C. elegans_
70
+ [Triangular State Machines - TSM](https://github.com/devoworm/Triangular-State-Machines-TSM) | Theoretical Gene Expression Network Motifs
71
+ [Theoretical-Types-of-Embryo-Developmental-Networks](https://github.com/devoworm/Theoretical-Types-of-Embryo-Developmental-Networks) | Graph Theory as Applied to Development
72
+ [Raising the Worm Brain](https://github.com/devoworm/Raising-the-Worm-Brain) | Functional Developmental Connectomes
73
+ [Emergent Behavior](https://github.com/devoworm/Emergent-Behavior) | Behavioral Emergence in Development