File size: 17,893 Bytes
fcf8903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "name": "Copy of torch_to_onnx.ipynb",
      "provenance": [],
      "collapsed_sections": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "xAk44VAUMcI4"
      },
      "source": [
        "### The goal is to export  the DevoLearn nucleus segmentation model to ONNX and run inference using ONNX runtime.\n",
        "\n",
        "Link to tutorial - https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "1cvIRtSg1xPj"
      },
      "source": [
        "!pip install segmentation-models-pytorch\n",
        "!pip install onnx\n",
        "!git clone https://github.com/DevoLearn/devolearn.git\n",
        "!pip install onnxruntime"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "P9r-q1crDZ74"
      },
      "source": [
        "### Import Libraries:"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "bo1ngsVb1mhk"
      },
      "source": [
        "import torch\n",
        "import segmentation_models_pytorch as smp\n",
        "import torch.onnx\n",
        "import numpy as np\n",
        "import onnx\n",
        "import onnxruntime as ort\n",
        "\n",
        "import cv2\n",
        "import matplotlib.pyplot as plt\n",
        "from PIL import Image"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "plqmhQ3IDfIg"
      },
      "source": [
        "### Load model:\n",
        "`model.eval()` sets model to inference mode -\n",
        "* Normalization layers use running stats.\n",
        "* deactivate dropout layers"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "Ah3kvIEh1fT4"
      },
      "source": [
        "model = torch.load('/content/devolearn/devolearn/cell_nucleus_segmentor/cell_nucleus_segmentation_model.pth', map_location='cpu')\n",
        "model.eval()"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ahpQaPJkELZi"
      },
      "source": [
        "### Define sample input `x` :\n",
        "* The values in this can be random as long as it is the right type and size.\n",
        "* In this case, `x` is a tensor, that corresponds to a batch of one single channel, 256x256 image.\n",
        "* Make sure `out` is valid."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "v6aHqHs21vSK",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "4b0e31ec-daa2-465b-cb9b-295ff168f904"
      },
      "source": [
        "x = torch.randn(1, 1, 256, 256, requires_grad=False)\n",
        "out=model(x)"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at  /pytorch/c10/core/TensorImpl.h:1156.)\n",
            "  return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)\n"
          ],
          "name": "stderr"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "J5adRnBxFvr9"
      },
      "source": [
        "### Export model:\n"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "Cgn1VgKi30dT",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "4d19e8dc-5344-4c43-8071-ec13c8d665d2"
      },
      "source": [
        "torch.onnx.export(model,                     # model being run\n",
        "                  x,                         # model input (or a tuple for multiple inputs)\n",
        "                  \"nucleus_segmentor.onnx\", # where to save the model (can be a file or file-like object)\n",
        "                  export_params=True,        # store the trained parameter weights inside the model file\n",
        "                  opset_version=11,          # the ONNX version to export the model to\n",
        "                  do_constant_folding=True,  # whether to execute constant folding for optimization\n",
        "                  input_names = ['input'],   # the model's input names\n",
        "                  output_names = ['output'], # the model's output names\n",
        "                  dynamic_axes={'input' : {0 : 'batch_size'},    # variable length axes\n",
        "                                'output' : {0 : 'batch_size'}})"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "/usr/local/lib/python3.7/dist-packages/torch/_tensor.py:575: UserWarning: floor_divide is deprecated, and will be removed in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values.\n",
            "To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). (Triggered internally at  /pytorch/aten/src/ATen/native/BinaryOps.cpp:467.)\n",
            "  return torch.floor_divide(self, other)\n"
          ],
          "name": "stderr"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "RYPqPCKhGRzJ"
      },
      "source": [
        "### Define `expand_dims_twice`:\n"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "vfHgRLatcbY3"
      },
      "source": [
        "def expand_dims_twice(arr):\n",
        "    norm=(arr-np.min(arr))/(np.max(arr)-np.min(arr)) #normalize\n",
        "    ret = np.expand_dims(np.expand_dims(norm, axis=0), axis=0)\n",
        "    return(ret)"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "mOY7WkrEI7xi"
      },
      "source": [
        "### Run inference from ONNX file:\n",
        "The output image below the following cell is inferred from the ONNX model."
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "dfAoZNQk4l9r",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 305
        },
        "outputId": "5f2a4e6c-bb8d-4862-8d7e-a51ec94a26a6"
      },
      "source": [
        "ort_session = ort.InferenceSession('nucleus_segmentor.onnx')\n",
        "\n",
        "img = cv2.imread(\"/content/devolearn/devolearn/tests/sample_data/images/nucleus_seg_sample.png\",0)\n",
        "resized = cv2.resize(img, (256,256),\n",
        "               interpolation = cv2.INTER_NEAREST)\n",
        "\n",
        "print(\"dims before expand_dims_twice - \", resized.shape)\n",
        "img_unsqueeze = expand_dims_twice(resized)\n",
        "print(\"dims after expand_dims_twice - \", img_unsqueeze.shape)\n",
        "\n",
        "onnx_outputs = ort_session.run(None, {'input': img_unsqueeze.astype('float32')})\n",
        "plt.imshow(onnx_outputs[0][0][0])\n",
        "plt.show()"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "dims before expand_dims_twice -  (256, 256)\n",
            "dims after expand_dims_twice -  (1, 1, 256, 256)\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "display_data",
          "data": {
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQYAAAD8CAYAAACVSwr3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAat0lEQVR4nO3deZhcZZn+8e9T1RudztYJ2QMJoUEISAiZEBYRBwSMYiKOCKJEBoiQIDiAM9HB0WFGFAFB/CGYCIojggygRFkkxGB0IJAFyL4vJCFJQ9ZOd5buquf3R59AJyedquqq6lpyf66rrqp+6z2nnpyu3H3W95i7IyLSUiTXBYhI/lEwiEiIgkFEQhQMIhKiYBCREAWDiIRkLRjM7CIzW2Jmy81sQrY+R0Qyz7JxHoOZRYGlwCeBdcBM4HJ3X5jxDxORjMvWGsNwYLm7r3T3vcATwKgsfZaIZFhJlubbF1jb4ud1wOmtdS6zcq+gQ5ZKERGAOra+7+5HJtM3W8GQkJmNBcYCVFDJ6XZerkoROSy87E+tSbZvtjYl1gP9W/zcL2j7gLtPdPdh7j6slPIslSEibZGtYJgJ1JjZQDMrAy4DJmfps0Qkw7KyKeHuTWZ2A/BnIAo84u4LsvFZIpJ5WdvH4O7PA89na/4ikj0681FEQhQMIhKiYBCREAWDiIQoGEQkRMEgIiEKBhEJUTCISIiCQURCFAwiEqJgEJEQBYOIhCgYRCREwSAiIQoGEQlRMIhIiIJBREIUDCISomAQkRAFg4iEKBhEJETBICIhCgYRCVEwiEiIgkFEQhQMIhKiYBCREAWDiIQoGEQkRMEgIiEKBhEJUTCISIiCQURCFAwiElKSzsRmthqoA2JAk7sPM7Nq4HfAAGA1cKm7b02vTBFpT5lYY/iEuw9x92HBzxOAqe5eA0wNfhaRApKNTYlRwKPB60eB0Vn4DBHJonSDwYGXzGy2mY0N2nq6+4bg9Uag58EmNLOxZjbLzGY1sifNMkQkk9LaxwCc7e7rzawHMMXMFrd8093dzPxgE7r7RGAiQCerPmgfEcmNtNYY3H198FwL/B4YDmwys94AwXNtukWKSPtqczCYWQcz67jvNXABMB+YDIwJuo0Bnk23SBFpX+lsSvQEfm9m++bzW3d/0cxmAk+a2dXAGuDS9MsUkfbU5mBw95XAKQdp3wycl05RIpJbOvNRREIUDCISomAQkZB0z2OQPBQ9diDxrlW4QaShEVa+Q7yhIddlSQFRMBSR6Ak11J7ZnVOuncdD/Z+i1KJMrq/k3x77KgP/dzOxBUtyXaIUCHPP/UmHnazaTzcdyEhH9NiB7HowzrTBBz9t5JOLLqb0ulJiy1a2c2WSL172p2a3uNjxkLSPoQhEu3al+tdbWw0FgCkn/JEl43sQqaxsx8qkUCkYikG3LvxmwCsJu730ubuJdO6U/Xqk4CkYisB9U3+TVL9BpVXcO+PpLFcjxUDBUODiZw+hZzT5X2OfaBQbdlIWK5JioGAocFf84nk6R45Iun9VpIJTJs3PYkVSDBQMh6GPVq7NdQmS5xQMBSx6/LFUR3emPF2FNRLtVp2FiqRYKBgK2Jo7yrmwcnvK032mw2bemdQ7CxVJsVAwFLBenesot9KUpyu3Uvp12ZaFiqRYKBhEJETBICIhCobDVMz1q5fW6dtxGHplVwRu757rMiSPKRgKWCzetl/fxqbORP76ZoarkWKiYChga1b04P1YfcrTbWzqnIVqpJgoGArYceNm8nz90SlNs8cbmfjEyCxVJMVCwVDI3NkSq0ppkjveH0L//3o1SwVJsVAwFLjfff8idsZ3J91/6n+dncVqpFgoGApcp9/OYPhDNyfVd8gPxlH1h9lZrkiKgYKhCBx979sc/8j1bI/vCr3X6DHWNe3kpPvH0evBN/CmphxUKIVGo0QXgXh9PQNue43zVt3Ml29+Yb/3Hll2Bn2veIe+9a+S+2F/pVBolGiRw4RGiRaRtCgYRCREwSAiIQoGEQlRMIhISMJgMLNHzKzWzOa3aKs2sylmtix47hq0m5ndb2bLzWyumQ3NZvEikh3JrDH8CrjogLYJwFR3rwGmBj8DfAqoCR5jgQczU6aItKeEweDu04EtBzSPAh4NXj8KjG7R/mtvNgPoYmYajlikwLR1H0NPd98QvN4I9Axe9wVa3s1kXdAmIgUk7Z2P3nzqZMqnT5rZWDObZWazGtmTbhkikkFtDYZN+zYRgufaoH090L9Fv35BW4i7T3T3Ye4+rJTyNpYhItnQ1mCYDIwJXo8Bnm3RfmVwdGIEsL3FJoeIFIiEV1ea2ePAuUB3M1sHfBf4IfCkmV0NrAEuDbo/D4wElgMNwFVZqFlEsixhMLj75a28FbocMtjfMD7dokTaysrL2TH6VDo++TrkwZXDhUpnPkrBs5ISdl88nA7Tj+T2xX/nsR/dzZarRuS6rIKmgVqksEWibP3SP/D6D/edS1cKlPLQd37Cd/52GbFlK3NZXcHSGoMUtGh1F577/t2h9tPKy+j0K93Ru60UDFLYolG6Rzsc9K3qsoZ2LqZ4KBiksFW3fletCI6VlrVjMcVDwSAFbfXnj2z1vf4VW7Djj2nHaoqHgkEKWo/Zja2+t6WpA7ZpcztWUzx0VCJFJQOOorF3V7wkgsUd3CnZtov4ijX4Hl3z0d4q56xhZ3w3VZGK0Ht1TRXE3nsvB1UVPgVDssywYSdR9987eX7wz/f7It5WezJ/+cFZdPrDmwqHduY76/nkvCt47ZSn92vf44383/qB9GJRjiorbNqUSFLk5OOpvm8d00/+feiv03/3mMe5E17FagbmqLrDV7y+ni4Tyhi97ML97sQ1f6/T/f7KHFZW2BQMSYgeeSS9Jq7ntwOntdrnjp5zWf1P1doLngO+YBl7bqzmwgn/wqAnr+OlhlK+/q0bKfmL7tPZVroTVRJKjhnA5L89Q9QOnaOL9jZwy2mfIbb5wAGvpL1EO3WC3j2ILVme61LyTip3otI+hkTMuOS5GQlDAeCEskoo0SLNpdiOHbBjR67LKHjalEjCFzuuTrqvRbRIpfDpW5yARaNEUlhM3hTLYjUi7UPBkMDOUacRNct1GSLtSsGQwNbjUltjECkG+sYncPQvltHoyW0ePL2zEzQ1ZbkikexTMCQQe/994sST6vuz675AbOvWLFckkn0KhiRc986Bd+gLm7i9D6Vbd7dDNSLZp2BIxJ2tX6xi3PrWxxBsiO/lgZ+Pxt9e3I6FiWSPgiEJTes3sOzWEzht9qWh955rqGDIb26i75TNENehSikOOk0vGfEYkb++Sa81R3HmiOu44j+e45rOKxl23030/ns9g+bPJ1ZXl+sqRTJG10qkyoxot2qspITY5q14495cVySSFF0rkU3uxN4/PEYFinarxvv3ws2w4A9IZEcDTavXarOpyCkYJMSGncTWEztSe3YTiz/9M8qtFICYx7ll43Cm/2I4vR5b0HzBkhQlBYPsx884hSPvWcNzR/8luKK09IP3ohbhvt6ziN32BjWDr+f4STuIv60RkoqRjkrIB6KDj+fk/zeP3wx45ZCXmUctwtzRP2HZv1aAriMpSgoGAZoHOLnymZe4p/ecpPpXRSp45WM/ZdUdukdkMdKmRBZFKiuxIyqIbd2e1zvrIh078h9vTWNERTSl6fqVVBE/ajeRigriu3XWZzHRGkOmmeFnDaHxgmGs/OWxPP72c2wZMxz7h5NzXVmrdj9TzWnlbZt2wbkTefdrQzNbkOSc1hgyrHbcGfztWz9uMZL0Ecz8/oNM3w0Tvn0dHZ+YkdP6DmSnDuaao16k1FJbW9in3ErZ1cuJVFYSb9C9IouFgiGD3v3mmUy78S6qIuGbrJ5TAXfd8TNu7Dye7j9/LQfVHdyS6yoZWbkWaPtQ69dd/GdeeuoMmL0gc4Xlu0iUXZ89jbUXfthkeyP0me50ePr13NWVIQqGDLro8tdavfMywFkVEW7/5i/5z91X0fXR/AiH7n230zWa3v0Xbq5eyZ+6fqLFgc3iVtKrJ9HfGZ/v8SfGdn73g/Y93sjjF/blzsH/xIB75xEv4NPkE+5jMLNHzKzWzOa3aPuema03s7eCx8gW733LzJab2RIzu/Dgcy0+yx44nX878u8J+326cjfba8iLw3zRrl3pVJGZnYbx8sNjd5WVlDBm+gwm17y4XyhA82bVVzvV8vzVP+Ka2W/D8Pzdr5RIMr/NXwEHG5DgXncfEjyeBzCzE4HLgMHBND8za+PGa4Gp6rvjkGsLLb351Z9Qf8nwLFeU2Kqvn8Dvjn88I/P67J1TiXarzsi88lW0ezeuXbiUS6u2H7LfwNIqPl+1g6efmUT0+GPbqbrMShgM7j4dSPYOKqOAJ9x9j7uvApYDuf8fkGUl/fvRp1PypwdXRsrYenwUK2/joYAMaar0pMMskZurV2Klxb0xsevxKkZ32JZ0/6pIBV/945QsVpQ96az/3WBmc4NNja5BW19gbYs+64K2EDMba2azzGxWI4V9I9iNI/vznQF/TGmaJ8feQ6R/nyxVJJnWeMEwLunzVlI3HmrpwsqNbL72jCxVlT1tDYYHgUHAEGADcE+qM3D3ie4+zN2HlZLbv5zpiu6GzbGqlKb5SGk5RItnK+uJuq54EQ+Eu+rzxte7rkl5us6RI/jyN17IQkXZ1aZgcPdN7h5z9zgwiQ83F9YD/Vt07Re0FbXSXc6WFIMh1b88+e4HD11OfNuht70LVaRjR0o6NrZ5+gprJNKxYwYryr42fTvNrHeLHz8H7DtiMRm4zMzKzWwgUAO8kV6J+a/Twm28tHlwrsvIqW4L9hbtGkPtl07i/z72QJunv6rzalZMGpjBirIv4XkMZvY4cC7Q3czWAd8FzjWzIYADq4GvAbj7AjN7ElgINAHj3ZO8KUMBi89fzPz3ToAUfverGndCPLlh6bOlbLvxTtNOjipJbW3nQKsadxLdU7y/5qYKo0caO2nLrZTqToV1VmgyRyUud/fe7l7q7v3c/WF3/4q7n+zuH3X3z7r7hhb9v+/ug9z9eHcvvI2rNtq9sEvzf/Yknf/MrfjG97JYUWJHP7iAMUuuSHs+n3zqVkrmFO9t5714dgUlrbg2dHNo4G1v8NCWs5Pu3+s1cn5mXGzbdnbuSX/Hb+X6SM7/LdlS0q8vsbPS33di5nlxUluyFAyZEo/x17tHUBurT9j1nHmfo/NbuV1b2Gf39O4s2LurzdNfuvI8+kwrzp2OAE39unHPKU+lPZ/SSBwrK8tARe1DwZBBnR+bwYjf33zIPrWxeja/0pvYspXtVNWh9Z+0iFcajmvz9DOXDsTfLN6LpyzmKR+KPpjK0r1EqjJzMll7UDBk2EduW8TA565le3z/v8IN8b2807STEdO+zlH3zoE8GLYfILZ1K3/YMISYp74j9EurPsFHblqSharySFOc95rSP9TY44g66F44p4wrGDIstmMHx107k9HX3MhV73yMh7f34qFtfTnjnm9w7dEfo+bKOXk32lHkvLX8eGtNStNM3RXl3TuOLdp9C/tEt+3kiTVJ3YrhkHbHSrG9bT8Xor3psussKXtxJu++CP9b0g9vaqIXr+a6pEOadt4gFj/bm4ePSnyF6J2ba5j04vkMei4/Lh3PpqZVa9j15zObz/FNwzs7utJ5VeEcudEaQ5YVykk/sU21bLiyJ2fNvaTVPnu8kRNf/TIv3vpxBn0zP0LBSkqo++IIVtx1BrtGDcdK8vNvXdwL54gEaI1BWogtXUHnGwcx7OPXU3/BTv5y+oP0LqnixYZybn70ajqscwZOeYemdflxlrsNO4ltt+9m3DFPcUXHWn42ciBPjz+Vde93YdCX52VsAF6LN4fivhvvpOq5hgqqftI5I7W0F927Ug6qpFdPYn2749EIkd2NsHR1Xu0bWfrL07j37N9xceWO0HUnDfG9TNh4Fisu7kbTho1pf1a0ezdWP9SbhWf+pk3T37d1AC8M7pJ2HenSvSslbU0bN8HGTQDk9sTt/VlpGct+NJTFF/w0+Ase3hqujJRxf5+Z1L5Rzxl/vYHjrlmUVqjF3t/M7g3H0hDfS2UktXMRpu+GPw/vCyQ+vyWfaB+DFIxIZSWrv3MaK774UFKr9T2iHVjxj79k8Y8/SrRnj7Q+u+brrzPk79ewM558wDy0rS8/HPpx4vWFFQqgYJBCEYmy+tYhLL7mwZQnXTV6Iot+cBTRTp3SKuHY8eu4b0tyhyfGrR/B5M+fSaxAL0VXMEhBiBxRwd+uvavN06+66Bcs/ml64y/GNm/hj3d/gnHrD31bvivXnMOK8TXEFi1L6/NyScEgBWH9Y0elPT7lkvMn8e6tZ6Y1jy6/fo2V42o45c5xfPe9/cfgWNpYT83/XE/tDf3hjXlpfU6u6aiEFIS7Vs/go2UViTsm8NOtR/OnwV0Td0zASsuI9umJdzjiw8amGL5+Y97uU0jlqITWGCTvRU88jo6WmRPF/rHDYrZclf7grN64l6Y1a4ktXPrhY+mKvA2FVCkYJO8N/e0iBpamf4UjwOCyIzj6nwt327+9KBgkr1l5OaWW2WHjPl69jMbzT8voPIuNgkHyWu1VQzm/4/zEHVMwrssqVl1yGI7XlgIFg+S1nefWMyLDtx2JWgSiud/pns8UDJLXyspiRXcPjkKgJS4iIQoGOTwV1vAI7U7BIHmtoa6chvjezM+4xLHSwhm1ub0pGCSvDXgswp8ajsz4fI/otJtIde7HSMhXCgbJa6VTZrNgV7+Mz3fXjgriW7ZlfL7FQsEg+c2dmGfha9poeGMWNlGKhIJB8t60jTU0Fv+9kfOKgkHyXqcvvMeqpsyNN7nHG7G9+uofipaO5L14XR118baN0Hwwv9w+gKNeyKeRLPOPgkEKwvXfuylj83p58wmUPz8zY/MrRgoGKQjdnpqbkf0MU3dFabhGhykTUTBIQYjX1/PpL/wzW2MNac1nzq4BxJYUzq3iciVhMJhZfzObZmYLzWyBmd0UtFeb2RQzWxY8dw3azczuN7PlZjbXzIZm+x8hh4fovJUM/+0tbZ5+6q4oL5+c3kjRh4tk1hiagFvc/URgBDDezE4EJgBT3b0GmBr8DPApoCZ4jAVSH+9b5CDidXUc/eIe/vO9E1Oedmd8N//ywNcgD8Y4LQQJg8HdN7j7nOB1HbAI6AuMAh4Nuj0KjA5ejwJ+7c1mAF3MrHfGK5fDUnTaHF751zM5e+4lvB9LbnzFh7f3YsgT36DvpMIeubk9pbSPwcwGAKcCrwM93X1D8NZGoGfwui+wtsVk64I2kYwo+/MsOt0U4XM33pxwn8OFiz7D49ePpOa784jX1bVThYUv6XtXmlkV8DTwDXffYfbhdavu7maW0jqamY2leVODCipTmVSE2JLlVC5ZzhULvsLW045k+t0P7Pf+7D1w+6e+SMn2Otg4J6/uv1kIkgoGMyulORQec/dnguZNZtbb3TcEmwq1Qft6oH+LyfsFbftx94nARGi+r0Qb65fDXGzpCjotXcHFTx0wJLzH8SYdfWirZI5KGPAwsMjdf9zircnAmOD1GODZFu1XBkcnRgDbW2xyiGSFN+7d/9GUmftQHK6SWWM4C/gKMM/M3gravg38EHjSzK4G1gCXBu89D4wElgMNwFUZrVhEsi5hMLj732l9IKzQfeW8+Z5349OsS0RySGc+ikiIgkFEQhQMIhKiYBCREAWDiIQoGEQkRMEgIiEKBhEJUTCISIiCQURCFAwiEqJgEJEQBYOIhCgYRCREwSAiIQoGEQlRMIhIiIJBREIUDCISomAQkRAFg4iEKBhEJETBICIhCgYRCVEwiEiIgkFEQhQMIhKiYBCREAWDiIQoGEQkRMEgIiEKBhEJUTCISIiCQURCEgaDmfU3s2lmttDMFpjZTUH798xsvZm9FTxGtpjmW2a23MyWmNmF2fwHiEjmlSTRpwm4xd3nmFlHYLaZTQneu9fd727Z2cxOBC4DBgN9gJfN7Dh3j2WycBHJnoRrDO6+wd3nBK/rgEVA30NMMgp4wt33uPsqYDkwPBPFikj7SGkfg5kNAE4FXg+abjCzuWb2iJl1Ddr6AmtbTLaOgwSJmY01s1lmNquRPSkXLiLZk3QwmFkV8DTwDXffATwIDAKGABuAe1L5YHef6O7D3H1YKeWpTCoiWZZUMJhZKc2h8Ji7PwPg7pvcPebucWASH24urAf6t5i8X9AmIgUimaMSBjwMLHL3H7do792i2+eA+cHrycBlZlZuZgOBGuCNzJUsItmWzFGJs4CvAPPM7K2g7dvA5WY2BHBgNfA1AHdfYGZPAgtpPqIxXkckRAqLuXuua8DM3gPqgfdzXUsSulMYdULh1Ko6M+9gtR7t7kcmM3FeBAOAmc1y92G5riORQqkTCqdW1Zl56daqU6JFJETBICIh+RQME3NdQJIKpU4onFpVZ+alVWve7GMQkfyRT2sMIpInch4MZnZRcHn2cjObkOt6DmRmq81sXnBp+aygrdrMppjZsuC5a6L5ZKGuR8ys1szmt2g7aF3W7P5gGc81s6F5UGveXbZ/iCEG8mq5tstQCO6eswcQBVYAxwBlwNvAibms6SA1rga6H9D2I2BC8HoCcGcO6joHGArMT1QXMBJ4ATBgBPB6HtT6PeDWg/Q9MfgelAMDg+9HtJ3q7A0MDV53BJYG9eTVcj1EnRlbprleYxgOLHf3le6+F3iC5su2890o4NHg9aPA6PYuwN2nA1sOaG6trlHAr73ZDKDLAae0Z1UrtbYmZ5fte+tDDOTVcj1Ena1JeZnmOhiSukQ7xxx4ycxmm9nYoK2nu28IXm8EeuamtJDW6srX5dzmy/az7YAhBvJ2uWZyKISWch0MheBsdx8KfAoYb2bntHzTm9fV8u7QTr7W1UJal+1n00GGGPhAPi3XTA+F0FKugyHvL9F29/XBcy3we5pXwTbtW2UMnmtzV+F+Wqsr75az5+ll+wcbYoA8XK7ZHgoh18EwE6gxs4FmVkbzWJGTc1zTB8ysQzDOJWbWAbiA5svLJwNjgm5jgGdzU2FIa3VNBq4M9qKPALa3WDXOiXy8bL+1IQbIs+XaWp0ZXabtsRc1wR7WkTTvVV0B/Huu6zmgtmNo3pv7NrBgX31AN2AqsAx4GajOQW2P07y62EjzNuPVrdVF817zB4JlPA8Ylge1/k9Qy9zgi9u7Rf9/D2pdAnyqHes8m+bNhLnAW8FjZL4t10PUmbFlqjMfRSQk15sSIpKHFAwiEqJgEJEQBYOIhCgYRCREwSAiIQoGEQlRMIhIyP8HQIdcAQfshXYAAAAASUVORK5CYII=\n",
            "text/plain": [
              "<Figure size 432x288 with 1 Axes>"
            ]
          },
          "metadata": {
            "tags": [],
            "needs_background": "light"
          }
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "YtmfEX4oqbCT"
      },
      "source": [
        ""
      ],
      "execution_count": null,
      "outputs": []
    }
  ]
}