Spaces:
Runtime error
Runtime error
File size: 17,893 Bytes
fcf8903 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "Copy of torch_to_onnx.ipynb",
"provenance": [],
"collapsed_sections": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "xAk44VAUMcI4"
},
"source": [
"### The goal is to export the DevoLearn nucleus segmentation model to ONNX and run inference using ONNX runtime.\n",
"\n",
"Link to tutorial - https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html"
]
},
{
"cell_type": "code",
"metadata": {
"id": "1cvIRtSg1xPj"
},
"source": [
"!pip install segmentation-models-pytorch\n",
"!pip install onnx\n",
"!git clone https://github.com/DevoLearn/devolearn.git\n",
"!pip install onnxruntime"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "P9r-q1crDZ74"
},
"source": [
"### Import Libraries:"
]
},
{
"cell_type": "code",
"metadata": {
"id": "bo1ngsVb1mhk"
},
"source": [
"import torch\n",
"import segmentation_models_pytorch as smp\n",
"import torch.onnx\n",
"import numpy as np\n",
"import onnx\n",
"import onnxruntime as ort\n",
"\n",
"import cv2\n",
"import matplotlib.pyplot as plt\n",
"from PIL import Image"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "plqmhQ3IDfIg"
},
"source": [
"### Load model:\n",
"`model.eval()` sets model to inference mode -\n",
"* Normalization layers use running stats.\n",
"* deactivate dropout layers"
]
},
{
"cell_type": "code",
"metadata": {
"id": "Ah3kvIEh1fT4"
},
"source": [
"model = torch.load('/content/devolearn/devolearn/cell_nucleus_segmentor/cell_nucleus_segmentation_model.pth', map_location='cpu')\n",
"model.eval()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "ahpQaPJkELZi"
},
"source": [
"### Define sample input `x` :\n",
"* The values in this can be random as long as it is the right type and size.\n",
"* In this case, `x` is a tensor, that corresponds to a batch of one single channel, 256x256 image.\n",
"* Make sure `out` is valid."
]
},
{
"cell_type": "code",
"metadata": {
"id": "v6aHqHs21vSK",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "4b0e31ec-daa2-465b-cb9b-295ff168f904"
},
"source": [
"x = torch.randn(1, 1, 256, 256, requires_grad=False)\n",
"out=model(x)"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
" return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)\n"
],
"name": "stderr"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "J5adRnBxFvr9"
},
"source": [
"### Export model:\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "Cgn1VgKi30dT",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "4d19e8dc-5344-4c43-8071-ec13c8d665d2"
},
"source": [
"torch.onnx.export(model, # model being run\n",
" x, # model input (or a tuple for multiple inputs)\n",
" \"nucleus_segmentor.onnx\", # where to save the model (can be a file or file-like object)\n",
" export_params=True, # store the trained parameter weights inside the model file\n",
" opset_version=11, # the ONNX version to export the model to\n",
" do_constant_folding=True, # whether to execute constant folding for optimization\n",
" input_names = ['input'], # the model's input names\n",
" output_names = ['output'], # the model's output names\n",
" dynamic_axes={'input' : {0 : 'batch_size'}, # variable length axes\n",
" 'output' : {0 : 'batch_size'}})"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"/usr/local/lib/python3.7/dist-packages/torch/_tensor.py:575: UserWarning: floor_divide is deprecated, and will be removed in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values.\n",
"To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor'). (Triggered internally at /pytorch/aten/src/ATen/native/BinaryOps.cpp:467.)\n",
" return torch.floor_divide(self, other)\n"
],
"name": "stderr"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "RYPqPCKhGRzJ"
},
"source": [
"### Define `expand_dims_twice`:\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "vfHgRLatcbY3"
},
"source": [
"def expand_dims_twice(arr):\n",
" norm=(arr-np.min(arr))/(np.max(arr)-np.min(arr)) #normalize\n",
" ret = np.expand_dims(np.expand_dims(norm, axis=0), axis=0)\n",
" return(ret)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "mOY7WkrEI7xi"
},
"source": [
"### Run inference from ONNX file:\n",
"The output image below the following cell is inferred from the ONNX model."
]
},
{
"cell_type": "code",
"metadata": {
"id": "dfAoZNQk4l9r",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 305
},
"outputId": "5f2a4e6c-bb8d-4862-8d7e-a51ec94a26a6"
},
"source": [
"ort_session = ort.InferenceSession('nucleus_segmentor.onnx')\n",
"\n",
"img = cv2.imread(\"/content/devolearn/devolearn/tests/sample_data/images/nucleus_seg_sample.png\",0)\n",
"resized = cv2.resize(img, (256,256),\n",
" interpolation = cv2.INTER_NEAREST)\n",
"\n",
"print(\"dims before expand_dims_twice - \", resized.shape)\n",
"img_unsqueeze = expand_dims_twice(resized)\n",
"print(\"dims after expand_dims_twice - \", img_unsqueeze.shape)\n",
"\n",
"onnx_outputs = ort_session.run(None, {'input': img_unsqueeze.astype('float32')})\n",
"plt.imshow(onnx_outputs[0][0][0])\n",
"plt.show()"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"dims before expand_dims_twice - (256, 256)\n",
"dims after expand_dims_twice - (1, 1, 256, 256)\n"
],
"name": "stdout"
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQYAAAD8CAYAAACVSwr3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAat0lEQVR4nO3deZhcZZn+8e9T1RudztYJ2QMJoUEISAiZEBYRBwSMYiKOCKJEBoiQIDiAM9HB0WFGFAFB/CGYCIojggygRFkkxGB0IJAFyL4vJCFJQ9ZOd5buquf3R59AJyedquqq6lpyf66rrqp+6z2nnpyu3H3W95i7IyLSUiTXBYhI/lEwiEiIgkFEQhQMIhKiYBCREAWDiIRkLRjM7CIzW2Jmy81sQrY+R0Qyz7JxHoOZRYGlwCeBdcBM4HJ3X5jxDxORjMvWGsNwYLm7r3T3vcATwKgsfZaIZFhJlubbF1jb4ud1wOmtdS6zcq+gQ5ZKERGAOra+7+5HJtM3W8GQkJmNBcYCVFDJ6XZerkoROSy87E+tSbZvtjYl1gP9W/zcL2j7gLtPdPdh7j6slPIslSEibZGtYJgJ1JjZQDMrAy4DJmfps0Qkw7KyKeHuTWZ2A/BnIAo84u4LsvFZIpJ5WdvH4O7PA89na/4ikj0681FEQhQMIhKiYBCREAWDiIQoGEQkRMEgIiEKBhEJUTCISIiCQURCFAwiEqJgEJEQBYOIhCgYRCREwSAiIQoGEQlRMIhIiIJBREIUDCISomAQkRAFg4iEKBhEJETBICIhCgYRCVEwiEiIgkFEQhQMIhKiYBCREAWDiIQoGEQkRMEgIiEKBhEJUTCISIiCQURCFAwiElKSzsRmthqoA2JAk7sPM7Nq4HfAAGA1cKm7b02vTBFpT5lYY/iEuw9x92HBzxOAqe5eA0wNfhaRApKNTYlRwKPB60eB0Vn4DBHJonSDwYGXzGy2mY0N2nq6+4bg9Uag58EmNLOxZjbLzGY1sifNMkQkk9LaxwCc7e7rzawHMMXMFrd8093dzPxgE7r7RGAiQCerPmgfEcmNtNYY3H198FwL/B4YDmwys94AwXNtukWKSPtqczCYWQcz67jvNXABMB+YDIwJuo0Bnk23SBFpX+lsSvQEfm9m++bzW3d/0cxmAk+a2dXAGuDS9MsUkfbU5mBw95XAKQdp3wycl05RIpJbOvNRREIUDCISomAQkZB0z2OQPBQ9diDxrlW4QaShEVa+Q7yhIddlSQFRMBSR6Ak11J7ZnVOuncdD/Z+i1KJMrq/k3x77KgP/dzOxBUtyXaIUCHPP/UmHnazaTzcdyEhH9NiB7HowzrTBBz9t5JOLLqb0ulJiy1a2c2WSL172p2a3uNjxkLSPoQhEu3al+tdbWw0FgCkn/JEl43sQqaxsx8qkUCkYikG3LvxmwCsJu730ubuJdO6U/Xqk4CkYisB9U3+TVL9BpVXcO+PpLFcjxUDBUODiZw+hZzT5X2OfaBQbdlIWK5JioGAocFf84nk6R45Iun9VpIJTJs3PYkVSDBQMh6GPVq7NdQmS5xQMBSx6/LFUR3emPF2FNRLtVp2FiqRYKBgK2Jo7yrmwcnvK032mw2bemdQ7CxVJsVAwFLBenesot9KUpyu3Uvp12ZaFiqRYKBhEJETBICIhCobDVMz1q5fW6dtxGHplVwRu757rMiSPKRgKWCzetl/fxqbORP76ZoarkWKiYChga1b04P1YfcrTbWzqnIVqpJgoGArYceNm8nz90SlNs8cbmfjEyCxVJMVCwVDI3NkSq0ppkjveH0L//3o1SwVJsVAwFLjfff8idsZ3J91/6n+dncVqpFgoGApcp9/OYPhDNyfVd8gPxlH1h9lZrkiKgYKhCBx979sc/8j1bI/vCr3X6DHWNe3kpPvH0evBN/CmphxUKIVGo0QXgXh9PQNue43zVt3Ml29+Yb/3Hll2Bn2veIe+9a+S+2F/pVBolGiRw4RGiRaRtCgYRCREwSAiIQoGEQlRMIhISMJgMLNHzKzWzOa3aKs2sylmtix47hq0m5ndb2bLzWyumQ3NZvEikh3JrDH8CrjogLYJwFR3rwGmBj8DfAqoCR5jgQczU6aItKeEweDu04EtBzSPAh4NXj8KjG7R/mtvNgPoYmYajlikwLR1H0NPd98QvN4I9Axe9wVa3s1kXdAmIgUk7Z2P3nzqZMqnT5rZWDObZWazGtmTbhkikkFtDYZN+zYRgufaoH090L9Fv35BW4i7T3T3Ye4+rJTyNpYhItnQ1mCYDIwJXo8Bnm3RfmVwdGIEsL3FJoeIFIiEV1ea2ePAuUB3M1sHfBf4IfCkmV0NrAEuDbo/D4wElgMNwFVZqFlEsixhMLj75a28FbocMtjfMD7dokTaysrL2TH6VDo++TrkwZXDhUpnPkrBs5ISdl88nA7Tj+T2xX/nsR/dzZarRuS6rIKmgVqksEWibP3SP/D6D/edS1cKlPLQd37Cd/52GbFlK3NZXcHSGoMUtGh1F577/t2h9tPKy+j0K93Ru60UDFLYolG6Rzsc9K3qsoZ2LqZ4KBiksFW3fletCI6VlrVjMcVDwSAFbfXnj2z1vf4VW7Djj2nHaoqHgkEKWo/Zja2+t6WpA7ZpcztWUzx0VCJFJQOOorF3V7wkgsUd3CnZtov4ijX4Hl3z0d4q56xhZ3w3VZGK0Ht1TRXE3nsvB1UVPgVDssywYSdR9987eX7wz/f7It5WezJ/+cFZdPrDmwqHduY76/nkvCt47ZSn92vf44383/qB9GJRjiorbNqUSFLk5OOpvm8d00/+feiv03/3mMe5E17FagbmqLrDV7y+ni4Tyhi97ML97sQ1f6/T/f7KHFZW2BQMSYgeeSS9Jq7ntwOntdrnjp5zWf1P1doLngO+YBl7bqzmwgn/wqAnr+OlhlK+/q0bKfmL7tPZVroTVRJKjhnA5L89Q9QOnaOL9jZwy2mfIbb5wAGvpL1EO3WC3j2ILVme61LyTip3otI+hkTMuOS5GQlDAeCEskoo0SLNpdiOHbBjR67LKHjalEjCFzuuTrqvRbRIpfDpW5yARaNEUlhM3hTLYjUi7UPBkMDOUacRNct1GSLtSsGQwNbjUltjECkG+sYncPQvltHoyW0ePL2zEzQ1ZbkikexTMCQQe/994sST6vuz675AbOvWLFckkn0KhiRc986Bd+gLm7i9D6Vbd7dDNSLZp2BIxJ2tX6xi3PrWxxBsiO/lgZ+Pxt9e3I6FiWSPgiEJTes3sOzWEzht9qWh955rqGDIb26i75TNENehSikOOk0vGfEYkb++Sa81R3HmiOu44j+e45rOKxl23030/ns9g+bPJ1ZXl+sqRTJG10qkyoxot2qspITY5q14495cVySSFF0rkU3uxN4/PEYFinarxvv3ws2w4A9IZEcDTavXarOpyCkYJMSGncTWEztSe3YTiz/9M8qtFICYx7ll43Cm/2I4vR5b0HzBkhQlBYPsx884hSPvWcNzR/8luKK09IP3ohbhvt6ziN32BjWDr+f4STuIv60RkoqRjkrIB6KDj+fk/zeP3wx45ZCXmUctwtzRP2HZv1aAriMpSgoGAZoHOLnymZe4p/ecpPpXRSp45WM/ZdUdukdkMdKmRBZFKiuxIyqIbd2e1zvrIh078h9vTWNERTSl6fqVVBE/ajeRigriu3XWZzHRGkOmmeFnDaHxgmGs/OWxPP72c2wZMxz7h5NzXVmrdj9TzWnlbZt2wbkTefdrQzNbkOSc1hgyrHbcGfztWz9uMZL0Ecz8/oNM3w0Tvn0dHZ+YkdP6DmSnDuaao16k1FJbW9in3ErZ1cuJVFYSb9C9IouFgiGD3v3mmUy78S6qIuGbrJ5TAXfd8TNu7Dye7j9/LQfVHdyS6yoZWbkWaPtQ69dd/GdeeuoMmL0gc4Xlu0iUXZ89jbUXfthkeyP0me50ePr13NWVIQqGDLro8tdavfMywFkVEW7/5i/5z91X0fXR/AiH7n230zWa3v0Xbq5eyZ+6fqLFgc3iVtKrJ9HfGZ/v8SfGdn73g/Y93sjjF/blzsH/xIB75xEv4NPkE+5jMLNHzKzWzOa3aPuema03s7eCx8gW733LzJab2RIzu/Dgcy0+yx44nX878u8J+326cjfba8iLw3zRrl3pVJGZnYbx8sNjd5WVlDBm+gwm17y4XyhA82bVVzvV8vzVP+Ka2W/D8Pzdr5RIMr/NXwEHG5DgXncfEjyeBzCzE4HLgMHBND8za+PGa4Gp6rvjkGsLLb351Z9Qf8nwLFeU2Kqvn8Dvjn88I/P67J1TiXarzsi88lW0ezeuXbiUS6u2H7LfwNIqPl+1g6efmUT0+GPbqbrMShgM7j4dSPYOKqOAJ9x9j7uvApYDuf8fkGUl/fvRp1PypwdXRsrYenwUK2/joYAMaar0pMMskZurV2Klxb0xsevxKkZ32JZ0/6pIBV/945QsVpQ96az/3WBmc4NNja5BW19gbYs+64K2EDMba2azzGxWI4V9I9iNI/vznQF/TGmaJ8feQ6R/nyxVJJnWeMEwLunzVlI3HmrpwsqNbL72jCxVlT1tDYYHgUHAEGADcE+qM3D3ie4+zN2HlZLbv5zpiu6GzbGqlKb5SGk5RItnK+uJuq54EQ+Eu+rzxte7rkl5us6RI/jyN17IQkXZ1aZgcPdN7h5z9zgwiQ83F9YD/Vt07Re0FbXSXc6WFIMh1b88+e4HD11OfNuht70LVaRjR0o6NrZ5+gprJNKxYwYryr42fTvNrHeLHz8H7DtiMRm4zMzKzWwgUAO8kV6J+a/Twm28tHlwrsvIqW4L9hbtGkPtl07i/z72QJunv6rzalZMGpjBirIv4XkMZvY4cC7Q3czWAd8FzjWzIYADq4GvAbj7AjN7ElgINAHj3ZO8KUMBi89fzPz3ToAUfverGndCPLlh6bOlbLvxTtNOjipJbW3nQKsadxLdU7y/5qYKo0caO2nLrZTqToV1VmgyRyUud/fe7l7q7v3c/WF3/4q7n+zuH3X3z7r7hhb9v+/ug9z9eHcvvI2rNtq9sEvzf/Yknf/MrfjG97JYUWJHP7iAMUuuSHs+n3zqVkrmFO9t5714dgUlrbg2dHNo4G1v8NCWs5Pu3+s1cn5mXGzbdnbuSX/Hb+X6SM7/LdlS0q8vsbPS33di5nlxUluyFAyZEo/x17tHUBurT9j1nHmfo/NbuV1b2Gf39O4s2LurzdNfuvI8+kwrzp2OAE39unHPKU+lPZ/SSBwrK8tARe1DwZBBnR+bwYjf33zIPrWxeja/0pvYspXtVNWh9Z+0iFcajmvz9DOXDsTfLN6LpyzmKR+KPpjK0r1EqjJzMll7UDBk2EduW8TA565le3z/v8IN8b2807STEdO+zlH3zoE8GLYfILZ1K3/YMISYp74j9EurPsFHblqSharySFOc95rSP9TY44g66F44p4wrGDIstmMHx107k9HX3MhV73yMh7f34qFtfTnjnm9w7dEfo+bKOXk32lHkvLX8eGtNStNM3RXl3TuOLdp9C/tEt+3kiTVJ3YrhkHbHSrG9bT8Xor3psussKXtxJu++CP9b0g9vaqIXr+a6pEOadt4gFj/bm4ePSnyF6J2ba5j04vkMei4/Lh3PpqZVa9j15zObz/FNwzs7utJ5VeEcudEaQ5YVykk/sU21bLiyJ2fNvaTVPnu8kRNf/TIv3vpxBn0zP0LBSkqo++IIVtx1BrtGDcdK8vNvXdwL54gEaI1BWogtXUHnGwcx7OPXU3/BTv5y+oP0LqnixYZybn70ajqscwZOeYemdflxlrsNO4ltt+9m3DFPcUXHWn42ciBPjz+Vde93YdCX52VsAF6LN4fivhvvpOq5hgqqftI5I7W0F927Ug6qpFdPYn2749EIkd2NsHR1Xu0bWfrL07j37N9xceWO0HUnDfG9TNh4Fisu7kbTho1pf1a0ezdWP9SbhWf+pk3T37d1AC8M7pJ2HenSvSslbU0bN8HGTQDk9sTt/VlpGct+NJTFF/w0+Ase3hqujJRxf5+Z1L5Rzxl/vYHjrlmUVqjF3t/M7g3H0hDfS2UktXMRpu+GPw/vCyQ+vyWfaB+DFIxIZSWrv3MaK774UFKr9T2iHVjxj79k8Y8/SrRnj7Q+u+brrzPk79ewM558wDy0rS8/HPpx4vWFFQqgYJBCEYmy+tYhLL7mwZQnXTV6Iot+cBTRTp3SKuHY8eu4b0tyhyfGrR/B5M+fSaxAL0VXMEhBiBxRwd+uvavN06+66Bcs/ml64y/GNm/hj3d/gnHrD31bvivXnMOK8TXEFi1L6/NyScEgBWH9Y0elPT7lkvMn8e6tZ6Y1jy6/fo2V42o45c5xfPe9/cfgWNpYT83/XE/tDf3hjXlpfU6u6aiEFIS7Vs/go2UViTsm8NOtR/OnwV0Td0zASsuI9umJdzjiw8amGL5+Y97uU0jlqITWGCTvRU88jo6WmRPF/rHDYrZclf7grN64l6Y1a4ktXPrhY+mKvA2FVCkYJO8N/e0iBpamf4UjwOCyIzj6nwt327+9KBgkr1l5OaWW2WHjPl69jMbzT8voPIuNgkHyWu1VQzm/4/zEHVMwrssqVl1yGI7XlgIFg+S1nefWMyLDtx2JWgSiud/pns8UDJLXyspiRXcPjkKgJS4iIQoGOTwV1vAI7U7BIHmtoa6chvjezM+4xLHSwhm1ub0pGCSvDXgswp8ajsz4fI/otJtIde7HSMhXCgbJa6VTZrNgV7+Mz3fXjgriW7ZlfL7FQsEg+c2dmGfha9poeGMWNlGKhIJB8t60jTU0Fv+9kfOKgkHyXqcvvMeqpsyNN7nHG7G9+uofipaO5L14XR118baN0Hwwv9w+gKNeyKeRLPOPgkEKwvXfuylj83p58wmUPz8zY/MrRgoGKQjdnpqbkf0MU3dFabhGhykTUTBIQYjX1/PpL/wzW2MNac1nzq4BxJYUzq3iciVhMJhZfzObZmYLzWyBmd0UtFeb2RQzWxY8dw3azczuN7PlZjbXzIZm+x8hh4fovJUM/+0tbZ5+6q4oL5+c3kjRh4tk1hiagFvc/URgBDDezE4EJgBT3b0GmBr8DPApoCZ4jAVSH+9b5CDidXUc/eIe/vO9E1Oedmd8N//ywNcgD8Y4LQQJg8HdN7j7nOB1HbAI6AuMAh4Nuj0KjA5ejwJ+7c1mAF3MrHfGK5fDUnTaHF751zM5e+4lvB9LbnzFh7f3YsgT36DvpMIeubk9pbSPwcwGAKcCrwM93X1D8NZGoGfwui+wtsVk64I2kYwo+/MsOt0U4XM33pxwn8OFiz7D49ePpOa784jX1bVThYUv6XtXmlkV8DTwDXffYfbhdavu7maW0jqamY2leVODCipTmVSE2JLlVC5ZzhULvsLW045k+t0P7Pf+7D1w+6e+SMn2Otg4J6/uv1kIkgoGMyulORQec/dnguZNZtbb3TcEmwq1Qft6oH+LyfsFbftx94nARGi+r0Qb65fDXGzpCjotXcHFTx0wJLzH8SYdfWirZI5KGPAwsMjdf9zircnAmOD1GODZFu1XBkcnRgDbW2xyiGSFN+7d/9GUmftQHK6SWWM4C/gKMM/M3gravg38EHjSzK4G1gCXBu89D4wElgMNwFUZrVhEsi5hMLj732l9IKzQfeW8+Z5349OsS0RySGc+ikiIgkFEQhQMIhKiYBCREAWDiIQoGEQkRMEgIiEKBhEJUTCISIiCQURCFAwiEqJgEJEQBYOIhCgYRCREwSAiIQoGEQlRMIhIiIJBREIUDCISomAQkRAFg4iEKBhEJETBICIhCgYRCVEwiEiIgkFEQhQMIhKiYBCREAWDiIQoGEQkRMEgIiEKBhEJUTCISIiCQURCEgaDmfU3s2lmttDMFpjZTUH798xsvZm9FTxGtpjmW2a23MyWmNmF2fwHiEjmlSTRpwm4xd3nmFlHYLaZTQneu9fd727Z2cxOBC4DBgN9gJfN7Dh3j2WycBHJnoRrDO6+wd3nBK/rgEVA30NMMgp4wt33uPsqYDkwPBPFikj7SGkfg5kNAE4FXg+abjCzuWb2iJl1Ddr6AmtbTLaOgwSJmY01s1lmNquRPSkXLiLZk3QwmFkV8DTwDXffATwIDAKGABuAe1L5YHef6O7D3H1YKeWpTCoiWZZUMJhZKc2h8Ji7PwPg7pvcPebucWASH24urAf6t5i8X9AmIgUimaMSBjwMLHL3H7do792i2+eA+cHrycBlZlZuZgOBGuCNzJUsItmWzFGJs4CvAPPM7K2g7dvA5WY2BHBgNfA1AHdfYGZPAgtpPqIxXkckRAqLuXuua8DM3gPqgfdzXUsSulMYdULh1Ko6M+9gtR7t7kcmM3FeBAOAmc1y92G5riORQqkTCqdW1Zl56daqU6JFJETBICIh+RQME3NdQJIKpU4onFpVZ+alVWve7GMQkfyRT2sMIpInch4MZnZRcHn2cjObkOt6DmRmq81sXnBp+aygrdrMppjZsuC5a6L5ZKGuR8ys1szmt2g7aF3W7P5gGc81s6F5UGveXbZ/iCEG8mq5tstQCO6eswcQBVYAxwBlwNvAibms6SA1rga6H9D2I2BC8HoCcGcO6joHGArMT1QXMBJ4ATBgBPB6HtT6PeDWg/Q9MfgelAMDg+9HtJ3q7A0MDV53BJYG9eTVcj1EnRlbprleYxgOLHf3le6+F3iC5su2890o4NHg9aPA6PYuwN2nA1sOaG6trlHAr73ZDKDLAae0Z1UrtbYmZ5fte+tDDOTVcj1Ena1JeZnmOhiSukQ7xxx4ycxmm9nYoK2nu28IXm8EeuamtJDW6srX5dzmy/az7YAhBvJ2uWZyKISWch0MheBsdx8KfAoYb2bntHzTm9fV8u7QTr7W1UJal+1n00GGGPhAPi3XTA+F0FKugyHvL9F29/XBcy3we5pXwTbtW2UMnmtzV+F+Wqsr75az5+ll+wcbYoA8XK7ZHgoh18EwE6gxs4FmVkbzWJGTc1zTB8ysQzDOJWbWAbiA5svLJwNjgm5jgGdzU2FIa3VNBq4M9qKPALa3WDXOiXy8bL+1IQbIs+XaWp0ZXabtsRc1wR7WkTTvVV0B/Huu6zmgtmNo3pv7NrBgX31AN2AqsAx4GajOQW2P07y62EjzNuPVrdVF817zB4JlPA8Ylge1/k9Qy9zgi9u7Rf9/D2pdAnyqHes8m+bNhLnAW8FjZL4t10PUmbFlqjMfRSQk15sSIpKHFAwiEqJgEJEQBYOIhCgYRCREwSAiIQoGEQlRMIhIyP8HQIdcAQfshXYAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"tags": [],
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "YtmfEX4oqbCT"
},
"source": [
""
],
"execution_count": null,
"outputs": []
}
]
} |