Spaces:
Running
on
Zero
Running
on
Zero
Add LORA weight customization
Browse files
app.py
CHANGED
@@ -160,7 +160,8 @@ elif model_type == "LORA":
|
|
160 |
else:
|
161 |
raise ValueError(f"Unsupported base model: {base_model}")
|
162 |
|
163 |
-
|
|
|
164 |
else:
|
165 |
raise ValueError(f"Unsupported model type: {model_type}")
|
166 |
|
@@ -176,6 +177,7 @@ def infer(
|
|
176 |
strength: float,
|
177 |
num_inference_steps: int,
|
178 |
guidance_scale: float,
|
|
|
179 |
progress=gr.Progress(track_tqdm=True),
|
180 |
):
|
181 |
logger.info(f"Starting image generation: {dict(prompt=prompt, image=init_image)}")
|
@@ -193,6 +195,9 @@ def infer(
|
|
193 |
if v
|
194 |
}
|
195 |
|
|
|
|
|
|
|
196 |
logger.debug(f"Generating image: {dict(prompt=prompt, **additional_args)}")
|
197 |
|
198 |
images = pipe(
|
@@ -249,6 +254,15 @@ with gr.Blocks(css=css) as demo:
|
|
249 |
value=0.0,
|
250 |
)
|
251 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
num_inference_steps = gr.Slider(
|
253 |
label="Number of inference steps",
|
254 |
minimum=0,
|
@@ -274,6 +288,7 @@ with gr.Blocks(css=css) as demo:
|
|
274 |
strength,
|
275 |
num_inference_steps,
|
276 |
guidance_scale,
|
|
|
277 |
],
|
278 |
outputs=[result],
|
279 |
)
|
|
|
160 |
else:
|
161 |
raise ValueError(f"Unsupported base model: {base_model}")
|
162 |
|
163 |
+
adapter_name = slugify(model_name)
|
164 |
+
pipe.load_lora_weights(get_file_name("Model"), adapter_name=adapter_name)
|
165 |
else:
|
166 |
raise ValueError(f"Unsupported model type: {model_type}")
|
167 |
|
|
|
177 |
strength: float,
|
178 |
num_inference_steps: int,
|
179 |
guidance_scale: float,
|
180 |
+
lora_weight: float,
|
181 |
progress=gr.Progress(track_tqdm=True),
|
182 |
):
|
183 |
logger.info(f"Starting image generation: {dict(prompt=prompt, image=init_image)}")
|
|
|
195 |
if v
|
196 |
}
|
197 |
|
198 |
+
if lora_weight:
|
199 |
+
pipe.set_adapters(adapter_name, lora_weight)
|
200 |
+
|
201 |
logger.debug(f"Generating image: {dict(prompt=prompt, **additional_args)}")
|
202 |
|
203 |
images = pipe(
|
|
|
254 |
value=0.0,
|
255 |
)
|
256 |
|
257 |
+
lora_weight = gr.Slider(
|
258 |
+
label="LORA weight",
|
259 |
+
minimum=0.0,
|
260 |
+
maximum=1.0,
|
261 |
+
step=0.01,
|
262 |
+
value=0.0,
|
263 |
+
visible=model_type == "LORA",
|
264 |
+
)
|
265 |
+
|
266 |
num_inference_steps = gr.Slider(
|
267 |
label="Number of inference steps",
|
268 |
minimum=0,
|
|
|
288 |
strength,
|
289 |
num_inference_steps,
|
290 |
guidance_scale,
|
291 |
+
lora_weight,
|
292 |
],
|
293 |
outputs=[result],
|
294 |
)
|