Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import gradio as gr | |
import spaces | |
import torch | |
from diffusers import AutoPipelineForInpainting | |
from loguru import logger | |
from PIL import Image, ImageChops | |
SUPPORTED_MODELS = [ | |
"stabilityai/sdxl-turbo", | |
"stabilityai/stable-diffusion-3-medium-diffusers", | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
"stable-diffusion-v1-5/stable-diffusion-v1-5", | |
"timbrooks/instruct-pix2pix", | |
] | |
DEFAULT_MODEL = "stabilityai/stable-diffusion-xl-base-1.0" | |
model = os.environ.get("MODEL_ID", DEFAULT_MODEL) | |
gpu_duration = int(os.environ.get("GPU_DURATION", 60)) | |
def load_pipeline(model): | |
return AutoPipelineForInpainting.from_pretrained( | |
model, torch_dtype=torch.float16, use_safetensors=True, variant="fp16" | |
) | |
logger.debug(f"Loading pipeline: {dict(model=model)}") | |
pipe = load_pipeline(model).to("cuda" if torch.cuda.is_available() else "mps") | |
def infer( | |
prompt: str, | |
image_editor: dict, | |
negative_prompt: str, | |
strength: float, | |
num_inference_steps: int, | |
guidance_scale: float, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
logger.info( | |
f"Starting image generation: {dict(model=model, prompt=prompt, image_editor=image_editor)}" | |
) | |
init_image: Image.Image = image_editor["background"].convert("RGB") | |
# Downscale the image | |
init_image.thumbnail((1024, 1024)) | |
mask_layer = image_editor["layers"][0] | |
mask_image = Image.new("RGBA", mask_layer.size, "white") | |
mask_image = Image.alpha_composite(mask_image, mask_layer).convert("RGB") | |
mask_image = ImageChops.invert(mask_image) | |
mask_image.thumbnail((1024, 1024)) | |
additional_args = { | |
k: v | |
for k, v in dict( | |
strength=strength, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
).items() | |
if v | |
} | |
logger.debug(f"Generating image: {dict(prompt=prompt, **additional_args)}") | |
images = pipe( | |
prompt=prompt, | |
image=init_image, | |
mask_image=mask_image, | |
negative_prompt=negative_prompt, | |
**additional_args, | |
).images | |
return images[0] | |
css = """ | |
@media (max-width: 1280px) { | |
#images-container { | |
flex-direction: column; | |
} | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(): | |
gr.Markdown("# Inpainting") | |
gr.Markdown(f"## Model: `{model}`") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0, variant="primary") | |
with gr.Row(elem_id="images-container"): | |
image_editor = gr.ImageMask(label="Initial image", type="pil") | |
result = gr.Image(label="Result") | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
) | |
with gr.Row(): | |
strength = gr.Slider( | |
label="Strength", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.01, | |
value=0.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=0, | |
maximum=100, | |
step=1, | |
value=0, | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=100.0, | |
step=0.1, | |
value=0.0, | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[ | |
prompt, | |
image_editor, | |
negative_prompt, | |
strength, | |
num_inference_steps, | |
guidance_scale, | |
], | |
outputs=[result], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |